Contents

PREFACE	•••••••••••••••••••••••••••••••••••••••	ix
Chapter 1	. INTRODUCTION	1
§ 1.	A superheated liquid as a particular case of metastable states	1
§ 2.	The binodal and spinodal. The critical point. The thermo-	
	dynamic stability of the phase	4
§ 3.	The equation of state	10
§ 4.	The metastable states and surface tension	12
§ 5.	Time characteristics of the processes when a new phase is	
-	separated	15
Chapter 2	. THE THERMODYNAMICS OF THE INITIAL STAGE OF THE	
	LIQUID – VAPOR PHASE TRANSITION	18
§ 6.	The work of bubble formation	18
§ 7.	The dependence of the surface tension on the radius of	
	curvature	20
§ 8.	Vapor pressure in the nucleating drop	22
§ 9.	Work of formation of the critical bubble on the wall	24
§10.	The stability of the metastable phase and nucleation kinetics	27
§11.	The Döring-Volmer theory	29
§12.	The Zel'dovich-Kagan theory	32
§13.	Time of establishment of the steady state	41
§14.	Some remarks on the nucleation theory	45
§ 15.	Special features of the homogeneous nucleation theory in	
	supersaturated vapor and in supercooled liquid	50
Chapter 3	• EXPERIMENTAL STUDY OF THE MAXIMUM LIQUID	
	SUPERHEAT	55
§ 16.	The experiments of Wismer	55
§17.	Superheating of liquid in open capillaries	58
§18.	Superheating of liquid during heat exchange with the wall	59
§19.	Experiments with bubble chambers	61
§20.	Droplet superheating in a liquid medium	66
§21.	Experiments with droplets at different pressures	72
\$ 22.	Breaking of liquids on tension	79

v

Chapter 4.	NEW METHODS FOR STUDYING NUCLEATION KINETICS	83
§ 23.	Formation of the spontaneous embryo as a random event	83
§24.	Determination of the mean lifetime of a superheated liquid	85
§25.	Impact conditions of boiling of liquid. Pulse heating method .	90
§ 26.	Experimental techniques with thin wires	96
§ 27.	The method of pulse heating of a liquid .	
	Some results	101
§28.	Methods of light scattering	107
Chapter 5.	EXPERIMENTAL CONFIRMATION OF THE HOMOGENEOUS	
	NUCLEATION THEORY	109
§ 29.	Preliminary remarks	109
§ 30.	The thermodynamic properties of the liquids studied	111
§ 31.	The maximum liquid superheat during floating of droplets	113
§ 32.	Confirmation of the nucleation theory over a wide range of	
	nucleation frequencies	116
\$ 33.	Discussion of the results of a comparison between theory	
	and experiment	122
§34.	Surface tension of the nucleated bubbles	125
§ 35.	Nucleation kinetics during condensation	129
\$36.	Crystallization of supercooled liquids	136
Chapter 6.	EXPLOSIVE BOILING OF LIQUIDS UNDER PULSE HEATING	143
\$ 37.	Boiling centers and bubble growth in a superheated liquid	143
§ 38.	Boiling under quasisteady-state conditions	151
§ 39.	Thermal calculation of the initial stage of explosive boiling	159
§ 40.	Fluctuation nucleation in the presence of ready centers	168
§ 41.	Development of explosive boiling during pulse heating of the	
	wire	170
§ 42.	Crisis of boiling and liquid superheat	172
-1	0	
Chapter 7.	INITIATED NUCLEATION	178
§ 43.	The mechanism of initiating bubbles with ionizing particles	178
§ 44.	Experimental study of initiated boiling	181
§ 45.	Effect of the radiation background on nucleation kinetics	189
§ 46.	Phenomenological description of the initiation effect	191
Chapter 8.	SPECIFIC VOLUMES AND EQUATIONS OF STATE OF A	
1	METASTABLE LIQUID	199
§ 47.	Two types of isotherms in a liquid - vapor system	199
\$ 48.	Method and techniques of piezometric experiments	200
\$ 49	The specific volumes of liquid n-bexane in the stable and	
	metastable states	202
\$ 50	The equation of state of a superheated liquid	205
§ 51.	Determination of the vapor pressure in a critical bubble	206

Chapter 9.	THE THERMODYNAMICS OF THE SPINODAL	209
§ 52.	The spinodal by the van der Waals equation	209
§ 53.	The spinodal as the envelope of a family of isochores,	
	adiabatic and isoenthalpic curves in $p \cdot T$ variables $\ldots \ldots$	211
§ 54.	Asymptotic behavior of the thermodynamic parameters on	
	the stability boundary	217
§ 55.	The spinodal and surface tension	220
§ 56.	The surface of internal energy	222
§ 57.	Model representation and the "rectilinear diameter" rule	223
§ 58.	The spinodal according to the hole theory of Furth	226
§ 59.	Approximation of the spinodal	231
Chapter 10	. DENSITY FLUCTUATIONS IN METASTABLE AND	
	NEAR CRITICAL STATES	238
§60.	Fluctuation and spontaneous nucleation	238
§61.	Density fluctuations near the critical point	241
§ 62.	Light scattering by a pure substance. Critical opalescence	243
§ 63.	The pattern of light scattering over a wide interval near	
	the critical point	245
§ 64.	Dispersion of scattering and correlation length	251
§ 65.	Checking the Ornstein-Zernike theory	254
§ 66.	Transfer phenomena near the critical point	258
DIDI TOCDA		