CONTENTS

THE I SYSTI	NATURE OF	F THE	ELECTRONIC EXCITED STATES OF MOLECULAR	1
	B. Di Ba	artol	o	
ABST	RACT			1
Ι.	SPECTROS	SCOPY	AND CHEMISTRY OF EXCITED MOLECULAR SPECIES	2
	I.A.	Gene	ral Considerations	2
	I.B.	The	Nature of the Electronic Excited State	3
	I.C.	The	Excited State and Chemical Reactions	3
	I.D.	The	Spectroscopy of the Excited State	4
II.	INTERAC	LION	OF RADIATION WITH ATOMS AND MOLECULES	5
	II.A.	Two-	Level Systems	5
	II.B.	The	Hamiltonian of the Interaction with Radiation	7
	II.C.	Trar	sition Rates	9
	II.D.	Opti	cal Bloch Equations	11
	II.E.	Rabi	Oscillations	13
	II.F.	Broa	dening of Spectral Lines	16
		1.	Definition of Susceptibility	16
		2.	Electric Dipole Moment	17
		з.	Radiative Broadening	19
		4.	Power Broadening	20
		5.	Damped Rabi Oscillations	23
		6.	Collision Broadening	26
		7.	Doppler Broadening	27

		8.	Composite Lineshape	29
III.	DENSITY	MATF	IX FORMULATION	31
	III.A.	Dens	ity Matrix	31
	III.B.	Pert	urbed Hamiltonian	32
	III.C.	Two-	Level System	33
	III.D.	Dens	sity Matrix of an Ensemble of Radiating Systems .	34
		1.	Ensemble of Quantum Systems	34
		2.	Perturbations	34
		3.	Ensemble-Quantum Averages	35
		4.	The Density Matrix	35
		5.	Properties of the Density Matrix	36
		6.	Equation of Motion of the Ensemble Density Matrix Operator	38
IV.	ROTATING	G WAV	E APPROXIMATION	40
	IV.A.	The	Gyroscopic Model	40
	IV.B.	The	Case of Linearly Polarized Field	43
	IV.C.	Intr	oduction of Damping and Losses	45
	IV.D.	Home	geneous and Inhomogeneous Broadening	46
		1.	Homogeneous Broadening	46
		2.	Inhomogeneous Broadening	46
	IV.E.	The	Rotating Wave Approximation	46
	IV.F.	Phot	on Echoes	52
V.	COHERENO	CE AN	D INCOHERENCE	57
	V.A.	Cohe	rent and Incoherent Sources	57
	V.B.	Crea	ting Coherence	59
		1.	T_1 , the Longitudinal Relaxation Time	60
		2.	T ₂ , the Transversal Relaxation Time	60
	V.C.	Rela	xation Processes and Effects on Spectral Lines .	63
		1.	T ₁ Processes	63

	2.	T ₂ Processes
V.D.	Dete	ermination of the Relaxation Constants
	1.	Determination of T ₁ 64
	2.	Determination of T_2
V.E.	Cohe	erent Spectroscopic Effects
	1.	Optical Nutation 66
	2.	Free Induction Decay
	з.	Self-Induced Transparency 66
V.F.	Cohe	erence of Radiating Systems
ACKNOWLEDGEM	ENTS	
REFERENCES .	• • • • •	

PROPE	CAN WE I	F THE EXCITED STATES OF COMPLEX MOLECULES:
W1211		
	J. Reus	5
ABST	RACT	
I.	INTRODUC	CTION
II.	IR-SPEC	TROSCOPY OF CLUSTERS
III.	RAP AND	RABI 76
	III.A.	RAP and Rabi, Classically 76
	III.B.	RAP Quantum Mechanically, for Two-, Three-, and Four-Level Systems
		1. Avoided Crossing in a Two Level System 77
		2. Three-Level System and One Color
		3. Three-Level System and Two Colors
		4. Three-Level System and Two Colors, Modified 80
		5. Four-Level System and One Color 81
IV.	RAMAN S	CATTERING
	IV.A.	Historical Note
	IV.B.	The Physics Behind the Raman-Effect

	IV.C.	Application of Raman Scattering
	IV.D.	Raman Overtone Studies
	IV.E.	Problems with the MW- and Raman-Method, Alternative Methods
	IV.F.	The Lesson for Solid State Physicists
۷.	GAS PHAS	SE SPECTROSCOPY - TOWARDS CONGESTION
	V.A.	Introduction
	V.B.	A Fermi-Resonance
	V.C.	Rovibrational Spectra of Symmetric Tops
	V.D.	The Case of HC=C-CH ₃ , a FERMI Resonance 89
	V.E.	Towards Congestion 91
REFE	RENCES .	
RATES	5 OF PRO	CESSES INVOLVING EXCITED STATES
	A.M. Sto	oneham
ARCTI		
	TJAS	97
ADOTI	RACT	
I.	INTRODUC	97 CTION 97
I. II.	INTRODUC	97 CTION 97 F NON-RADIATIVE TRANSITION 98
I. II.	INTRODUC TYPES OI	97CTION97F NON-RADIATIVE TRANSITION98Background: Types of Transition98
I. II.	INTRODUC TYPES OI II.A. II.B.	97 CTION 97 F NON-RADIATIVE TRANSITION 98 Background: Types of Transition 98 Are Steps Independent? Hierarchical Processes 98
I. II.	INTRODUC TYPES OF II.A. II.B. II.C.	97 CTION
I. II. III.	INTRODUC TYPES OI II.A. II.B. II.C. COOLING	97CTIONF NON-RADIATIVE TRANSITION98Background: Types of Transition98Are Steps Independent? Hierarchical Processes98Simple Models98TRANSITIONS I: GENERAL IDEAS
I. II. III.	INTRODUC TYPES OF II.A. II.B. II.C. COOLING III.A.	97CTION97F NON-RADIATIVE TRANSITION98Background: Types of Transition98Are Steps Independent? Hierarchical Processes98Simple Models98TRANSITIONS I: GENERAL IDEAS100Modes and Coordinates100
I. II. III.	INTRODUC TYPES OF II.A. II.B. II.C. COOLING III.A. III.B.	97CTION97F NON-RADIATIVE TRANSITION98Background: Types of Transition98Are Steps Independent? Hierarchical Processes98Simple Models98TRANSITIONS I: GENERAL IDEAS100Modes and Coordinates100Cooling of Simple Systems100
I. II. III.	INTRODUC TYPES OF II.A. II.B. II.C. COOLING III.A. III.B. III.C.	97CTION97F NON-RADIATIVE TRANSITION98Background: Types of Transition98Are Steps Independent? Hierarchical Processes98Simple Models98TRANSITIONS I: GENERAL IDEAS100Modes and Coordinates100Cooling of Simple Systems100Configuration Coordinate Diagrams101
I. II. III. IV.	INTRODUC TYPES OI II.A. II.B. II.C. COOLING III.A. III.B. III.C. COOLING	97 CTION

	IV.B.	Other Aspects of Large Vibrational Excitation103
	IV.C.	Amplitude Breathers in Trans- and Cis- Polyacetylene (t-PA, c-PA)104
v.	MORE TH/	AN ONE ENERGY SURFACE
	V.A.	The Landau-Stückelberg-Zener Ideas
	V.B.	Branching Between Configuration Coordinate Surfaces
	V.C.	Luminescence or Not?105
	V.D.	Luminescence of Polyacetylene Chains versus Length .108
	V.E.	Luminescence Quenching in Cis-Polyacetylene (c-PA) .108
VI.	THE DIFI CONFIGUE	TUSION PHENOMENON: INCOHERENT CHANGES OF
VII.	THE ELEC	CTRONIC PROBLEM114
VIII	. COUPLED	ELECTRONIC AND VIBRATIONS115
IX .	even mor	RE COMPLEX SYSTEMS116
REFE	RENCES	
EXCI	TED STATI	ES IN SEMICONDUCTORS119
	C. Kling	gshirn
ABSTI	RACT	
I.	ELEMENT	ARY EXCITATIONS IN SEMICONDUCTORS
	I.A.	Phonons, Plasmons, Excitons120
	I.B.	Coupling to the Radiation Field
	I.C.	Polaritons
II.	LINEAR C	OPTICAL PROPERTIES OF SEMICONDUCTORS143
	II.A.	Bulk Material143
	II.B.	Reduced Dimensionalities147

III.	NONLINE	AR OPTICS
IV.	THE FAT	E OF AN OPTICAL EXCITATION IN A SEMICONDUCTOR157
V.	FROM ON	E EXCITON TO THE ELECTRON - HOLE PLASMA
VI.	THE EXC	ITON-POLARITON REVISITED189
	VI.A.	Spatial Dispersion
	VI.B.	Methods of \vec{K} -Space Spectroscopy
	VI.C.	Outlook
VII.	CONCLUS	ION199
ACKN	OWLEDGEM	ENTS
REFEI	RENCES .	
ADVAI LUMII	NCES IN NESCENT	THE CHARACTERIZATION OF EXCITED STATES OF IONS IN SOLIDS
	G.F. Im	busch
ABSTI	G.F. Im	busch 207
ABSTI	G.F. Im RACT INTRODU	busch
ABSTI I. II.	G.F. Im RACT INTRODU RARE EA	busch
ABSTI I. II.	G.F. Im RACT INTRODU RARE EA II.A.	busch CTION
ABSTI I. II.	G.F. Im RACT INTRODU RARE EA II.A. II.B.	busch CTION
ABSTI I. II.	G.F. Im RACT INTRODU RARE EA II.A. II.B. II.C.	busch 207 CTION 207 RTH IONS 207 Transitions within $4f^n$ States of Rare Earth Ions 208 Vibronic Transitions 208 $4f^n \longleftrightarrow 4f^{n-1}$ 5d Transitions on Rare Earth Ions 211
ABSTI I. II.	G.F. Im RACT INTRODU RARE EAU II.A. II.B. II.C. II.D.	busch 207 CTION 207 RTH IONS 207 Transitions within $4f^n$ States of Rare Earth Ions 208 Vibronic Transitions 208 $4f^n \leftrightarrow 4f^{n-1}$ 5d Transitions on Rare Earth Ions 208 111 Two-Photon Spectroscopy of Rare Earth Ions in Solids 217
ABSTI I. II. III.	G.F. Im RACT INTRODU RARE EA II.A. II.B. II.C. II.D. TRANSIT	busch 207 CTION 207 RTH IONS 207 RTH IONS 208 Transitions within $4f^n$ States of Rare Earth Ions 208 Vibronic Transitions 208 $4f^n \leftrightarrow 4f^{n-1}$ 5d Transitions on Rare Earth Ions 211 Two-Photon Spectroscopy of Rare Earth Ions 217 ION METAL IONS 221
ABSTI I. II.	G.F. Im RACT INTRODU RARE EA II.A. II.B. II.C. II.D. TRANSIT III.A.	busch 207 CTION 207 RTH IONS 208 Transitions within $4f^n$ States of Rare Earth Ions 208 Vibronic Transitions 208 $4f^n \leftrightarrow 4f^{n-1}$ 5d Transitions on Rare Earth Ions 208 $4f^n \leftrightarrow 4f^{n-1}$ 5d Transitions on Rare Earth Ions 211 Two-Photon Spectroscopy of Rare Earth Ions 217 ION METAL IONS 221 Inhomogeneous Broadening and Site Distribution 222
ABSTI I. II.	G.F. Im RACT INTRODU RARE EA II.A. II.B. II.C. II.D. TRANSIT III.A. III.B.	busch

		1. Ni ²⁺ in MgO224
		2. Cr ³⁺ Ions in a Crystalline Environment228
		3. Luminescence from Cr ³⁺ in Glass235
IV.	HIGH CON	NCENTRATIONS OF OPTICALLY-ACTIVE IONS
	IV.A.	Excitation Transfer Among Optically-Active Ions239
	IV.B.	Luminescent States of Concentrated Materials241
v.	EFFICIE	NCY OF LUMINESCENCE FROM EXCITED STATES
	V.A.	Excited State Absorption in YAG:Ce ³⁺ 244
	V.B.	Measurement of Quantum Efficiency and ESA245
	V.C.	Direct Measurement of the Local Distortion about the Optically Active Ion248
CONCI	LUSION .	
DEDI	CATION .	
REFE	RENCES .	
RELA	KED EXCI	TED STATES OF COLOR CENTERS
	G. Balda	acchini
ABSTI	RACT	
Ι.	INTRODUC	CTION ,
11.	COLOR C	ENTERS AND OPTICAL CYCLE256
	II.A.	Introduction to Color Centers256
	II.B.	Optical Cycle of the F Center257
III.	EXCITED	STATES OF THE F CENTER262
	III.A.	Unrelaxed Excited States262
	III.B.	Relaxed Excited States265
IV.	PROPERT	IES OF THE RES

	IV.A.	Spa	tial	Exte	ensi	on	of	th	e W	ave	efu	nct	io	n	•••	•••	•••	••	•••	. 269
	IV.B.	Hig	her l	Lying	g Le	vel	s.	•••	•••	•••	•••	• • •	•••	•••	• • •	••	•••	•••	•••	. 272
	IV.C.	Ext	erna	l Fi	eld	Eff	ect	s	• • •	•••	••	• • •	•••		•••	••	•••	•••	••••	. 275
		1.	Ele	ctri	c Fi	eld	••	••		•••	••		•••	•••	• • •	•••		••	• • • •	. 275
		2.	Unia	axia	l St	res	s.	••		•••	••	• • •	••	••	•••	••	•••	••	• • • •	. 279
		з.	Mag	neti	c Fi	eld		••			••	•••	•••			•••		•••	• • • •	. 282
۷.	DISCUSS	ION		• • • •	• • • •	•••	•••	••	•••	•••	••		•••	•••	•••	•••	•••	• •	•••	. 287
VI.	CONCLUD	ING	REMA	RKS						• • •										. 295
ACKNO	WLEDGEMI	ENTS			• • • •	•••	•••		• • •	•••	•••		•••		•••	••			• • • •	. 300
REFE	RENCES .	• • • •	• • • •	• • • •		• • •	•••	••	•••	•••	••	•••	•••	••	•••	•••	•••	••	• • • •	. 300

F. Auzel

ABSTR	RACT	••••	
Ι.	INTRODUC	CTIO	N
II.	FROM SPO	ONTAI	NEOUS EMISSION TO SUPERFLUORESCENCE
	II.A.	Ind Ato	uced and Spontaneous Transitions in the Two-Level m
		1.	The Rabi Equation in the Fully Quantized Approach
		2.	The Synchronous Exchange Between Field and Atom
		3.	The Pseudo-Spin Bloch Vector of the Two-Levels System
		4.	Spontaneous Emission and the Weisskopf-Wigner Damping
	II.B.	The Deca	Merging of Coherent Emission and Spontaneous ay
		1.	The Damping of Rabi Oscillation by Spontaneous Decay

		2. The Link Between the Various Relaxation Times319
	II.C.	Field Coupled Cooperative Multiions Effects320
		1. Superradiance
		2. Superfluorescence (SF)
		3. Amplified Spontaneous Emission (ASE)
		 Experimental Results for SF and ASE in the Solid State
		5. SF Application
III.	HOT LUM	NESCENCE (H.L.)
	III.A.	A Two-Levels Limiting Case
	III.B.	From Resonant Raman Scattering (RRS) with Ordinary Luminescence (O.L.) through Hot Luminescence (H.L.).337
IV.	EXCITED TRANSFE	STATE ABSORPTION (ESA) ENHANCED BY ENERGY S IN RE DOPED SOLIDS
	IV.A.	ESA by APTE Effect and the Role of Diffusion339
	IV.B.	p-Conversion in Single Ion Level Description (APTE) and in Pair-Level One (Cooperative Effects)341
	IV.C.	Overview of Some Results in ESA by Energy Transfers
		 Line-Narrowing in n-Photon Summation as a Mean to Distinguish Between APTE and Cooperative Processes
		2. Use of ESA to Detect 1.5 μm Radiation344
		3. Negative Roles in Applications
		4. Positive Role in Laser Anti-Stokes Pumping344
v.	CONCLUS	ON
ACKN	OWLEDGEM	NT
REFE	RENCES .	
ADVA	NCES IN	HE SENSITIZATION OF PHOSPHORS

B. Smets

ABSTI	RACT								
I.	INTRODU	ODUCTION							
II.	EFFICIE	NCY OF LUMINESCENT CENTERS							
	II.A.	Dynamic Jahn-Teller Effect							
	II.B.	Multi-Level System							
	II.C.	Multi-Phonon Transitions							
III.	ENERGY	IRANSFER							
	III.A.	Resonant Transfer							
		1. Multipole Interaction							
		2. Exchange Interaction							
		3. Cross-Relaxation							
	III.B.	Non-Resonant Transfer							
		1. Multi-Phonon Assisted Processes							
		2. One- and Two-Phonon Assisted Processes							
IV.	ENERGY I	MIGRATION							
	IV.A.	Gd ³⁺ Mediated Transfer							
	IV.B.	Trapping Efficiency							
	IV.C.	Dimensionality of the Energy Migration							
	IV.D.	Sensitization of the Gd ³⁺ Sublattice							
		1. Sensitization with Ce ³⁺							
		2. Sensitization with Pr ³⁺							
		3. Sensitization with Bi ³⁺							
		4. Sensitization with Pb ²⁺							
v.	LAMP PHO	OSPHORS							
	V.A.	General Lighting							
		1. Halophosphate Lamps							
		2. Tricolour Lamp							
		3. Second Generation Tricolour Lamps							

	4. Special de Luxe Lamp
	5. Cost-Price Reduction
V.B.	Special Applications
	1. Sun-Tanning Lamps
	2. Psoriasis
REF ERENCES	

÷

ABSTI	RACT	
I.	INTRODUC	CTION
II.	HOMOGENI	EOUS BROADENING
III.	INHOMOGI	ENEOUS BROADENING
IV.	HYPERFI	NE INTERACTIONS
	IV.A.	The Hyperfine Hamiltonian406
	IV.B.	Electronic Singlets408
	IV.C.	Non-Kramers' Doublets410
	IV.D.	Kramers' Doublets410
v.	SPECTRA	L HOLEBURNING
	V.A.	Introduction411
	V.B.	Mechanisms for Holeburning411
		1. Population Saturation412
		2. Hyperfine Holeburning413
		3. Superhyperfine Holeburning415
		4. Zeeman Sub-Level Holeburning417
		5. Persistent Spectral Holeburning418
	V.C.	Measurement Techniques for Spectral Holes

VI.	COHERENT TRANSIENT TECHNIQUES	
	VI.A.	Optical Free Induction Decay421
	VI.B.	Delayed Optical Free Induction Decay422
		1. The Case of LaF_3 : Ho ³⁺
	VI.C.	Photon Echoes423
	VI.D.	Stimulated Photon Echoes428
VII.	OTHER TI	ECHNIQUES
	VII.A.	Accumulated Photon Echoes429
	VII.B.	Photon Echo Nuclear Double Resonance (PENDOR)429
	VII.C.	Quantum-Beat Free Induction Decay430
VIII	TIME RE	SOLVED HOLEBURNING
IX.	SPECTRO	SCOPY IN EXTERNAL FIELDS
	IX.A.	Nonlinear Zeeman Effect434
	IX.B.	Stark Effect436
	IX.C.	Nuclear Zeeman Effect437
x.	CONCLUS	ION
REFERENCES		

LONG SEMINARS

EXCI1 SUBS1	TED-STATE DYNAMICS AND ENERGY TRANSFER IN DOPED-
	A. Brenier, C. Madej, C. Pédrini, and G. Boulon
ABSTI	ACT
I.	INTRODUCTION
II.	EFFECTS OF DISORDER ON EXCITED-STATE DYNAMICS PROPERTIES OF CR ³⁺ IONS

	II.A.	Effect of Ca-Zr Ion Pairs on Main Spectroscopic
		Properties of Cr ³⁺ Doped Substituted-GGG449
	II.B.	Analysis of the Fluorescence Decays in Relation with Multisites451
111.	ENERGY 1 Cr ³⁺ ANI	TRANSFER IN (Ca,Zr)-SUBSTITUTED GGG DOPED WITH D Tm ³⁺ IONS
IV.	CROSS-RI	ELAXATION MECHANISM BETWEEN Tm ³⁺ IONS
V.	EXCITED AND Ho ^{3.}	STATE DYNAMICS AND ENERGY TRANSFERS BETWEEN Tm ³⁺ ⁺ IONS
VI.	QUANTUM	YIELD OF ${}^{4}T_{2}(Cr^{3+}) \longrightarrow {}^{5}I_{7}(Ho^{3+})$ TRANSFER
VII.	CONCLUS	ION
ACKN	OWLEDGEM	ENTS
REFE	RENCES .	
APPE	NDIX	

C.W. Struck and W.H. Fonger

ABSTR	RACT	
I.	INTRODUC	CTION
II.	CURRENT	KNOWLEDGE
	II.A.	Broad-Band Absorptions
	II.B.	Broad-Band Emissions
	II.C.	Sequential Quenching of Rare-Earth Line Emissions486
	II.D.	Level Skipping and Feeding the ${}^{5}D_{j}$ States
	II.E.	The Breakup of the CTS into a Free Hole and a Trapped Electron490

III.	FUTURE	WORK
IV.	CONCLUS	IONS
REFE	RENCE	
PHOT OF S	OCHEMIST MALL MOL	RY, CHARGE TRANSFER STATES AND LASER APPLICATIONS ECULES IN RARE GAS CRYSTALS
	N. Schw	entner and M. Chergui
ABST	RACT	
I.	INTRODU	CTION
II.	STRUCTU CRYSTAL	RE AND DYNAMICS OF EDUCTS AND PRODUCTS IN THE S
	II.A.	Potential Surfaces of Parent Molecule
	II.B.	Properties of Rare Gas Matrix501
	II.C.	Site Geometry of Educt (Parent Molecule) and Product (Fragment)502
III.	SPECTRO	SCOPY OF DISSOCIATION BARRIERS
	III.A.	Sample Preparation502
	III.B.	Dissociation and Fragment Detection
IV.	DISSOCI	ATION IN MOLECULAR DYNAMICS CALCULATIONS
V.	IMPULSI	VE EXIT: C1_ DISSOCIATION508
VI.	DELAYED	EXIT: H-ABSTRACTION513
VII.	LONG RA	NGE TRANSPORT: F ₂ DISSOCIATION516
VIII	LASER A	PPLICATIONS517
	VIII.A.	Spectroscopy and Preparation of XeF in Ar and Kr Crystals518
	VIII.B.	Gain Measurements for XeF520

REFERENCES	. 522	22
------------	-------	----

THE S	STUDY OF MAGNETIC	PARAMAGNETIC EXCITED STATES BY ELECTRON RESONANCE
	J.H. var	n der Waals
ABSTI	RACT	
Ι.	INTRODUC	CTION
	I.A.	Kastler, Brossel, and Bitter's Optical Pumping Experiment on Mercury526
11.	METASTAE	BLE TRIPLET STATES IN SOLIDS AND THEIR DETECTION BY IONAL EPR
	II.A.	The Optical Pumping Cycle in Polyatomic Molecules and Hutchinson and Mangum's Experiment
	II.B.	Spin Hamiltonian and Zero-Field Splitting531
	11.C.	Limitations of Conventional CW EPR for the Detection of Excited States - Alternatives536
III.	OPTICAL SYSTEMS	DETECTION OF EPR IN EXCITED STATES OF POLYATOMIC IN SOLIDS
	III.A.	Experiments in a Magnetic Field537
	III.B.	Experiments on Triplet States in Zero Field544
IV.	ELECTRON NON-RAD	N-SPIN-ECHO EXPERIMENTS FOR THE IDENTIFICATION OF IATIVE EXCITED STATES
	IV.A.	Electron-Spin-Echo Detected EPR Spectra550
	IV.B.	Determination of Kinetics of Populating and Decay553
	IV.C.	Electron-Spin-Echo Envelope Modulation554
ACKN	OWLEDGEM	ENT557
REFE	RENCES .	

THE JAHN-TELLER EFFECT IN THE OPTICAL SPECTRA OF IMPURITIES561

G. Viliani

Ι.	INTRODU	CTION			
11.	LINEWID	TH OF FREE RUNNING LASERS			
	II.A.	Characteristics of the Cold Laser Cavity			
	II.B.	The Effect of Noise on Laser Linewidth593			
III.	REDUCTI	ON OF LASER LINEWIDTH596			
IV.	THE SPA	CE EXPERIMENT597			
V.	APPLICA	TIONS OF ULTRA-STABLE LASERS IN SPACE			
	V.A.	Gravity Wave Detection598			
	V.B.	Optical Clock Technology598			
	V.C.	Deep Space Communications599			
	V.D.	Tests of Relativity599			
	V.E.	Laser Cooled Atoms599			
ACKN	OWLEDGEM	ENTS			
REFE	REFERENCES				
SEMI	CONDUCTO R. Reis	RS QUANTUM DOTS IN AMORPHOUS MATERIALS601 feld			
ABST	RACT				
I.	INTRODU	CTION			
II.	THIRD-O	RDER SUSCEPTIBILITY602			
III.	SOL-GEL	GLASSES			
IV.	SEMICON	DUCTOR DOPED GLASSES			
v.	NONLINE	AR PROPERTIES			

ABSTI	RACT	
Ι.	INTRODU	CTION
II.	THE STA	TIC JAHN-TELLER EFFECT564
	II.A.	Case of No Spin-Orbit Interaction564
	II.B.	Effect of the Spin-Orbit Interaction567
	II.C.	Higher Order Effects: Quadratic JTE and Anharmonicity568
III.	THE DYN	AMICAL JAHN-TELLER EFFECT568
	III.A.	Ham Effect: Quenching of Orbital Operators570
	III.B.	Absorption Band Shapes572
	III.C.	Selective Intensity Quenching574
REFE	RENCES .	
SPEC' GEOM	IRAL PRO ETRIES . J. Klaf	PERTIES OF EXCITED STATES IN RESTRICTED
ABST	RACT	
т	τητρορι	CTION 577

1.	INTRODUCTION
II.	MODELS FOR STRETCHED EXPONENTIALS
III.	EXTENSIONS OF DET TO RESTRICTED GEOMETRIES

REFERENCES		• •	•	 	•	•		•	 	•	•	•	•	 •		•	•		•	•	• •		•	•	• •	 	 •	•	•	•	• •	. 5	8	8

A. M. Buoncristiani and S.P. Sandford

ABSIRACI	ABSTRACT	
----------	----------	--

VI.	CONCLU	SIONS	• • • •	 • • • •	 	• • • • • • • • • •	•••••	615
ACKN	OWLEDGE	MENTS	••••	 ••••	 			616
REFE	RENCES		••••	 ••••	 			616

NEW CRYSTALS FOR LASER APPLICATIONS (Abstract Only)623

A. Kaminskii

EXCI1 WITH	TED STATES AND REORIENTATIONAL PROPERTIES OF COLOR CENTERS AXIAL SYMMETRY
	A. Scacco
ABSTR	RACT
Ι.	INTRODUCTION
II.	AGGREGATE COLOR CENTERS
III.	EXCITED STATES AND REORIENTATION OF AGGREGATE COLOR CENTERS
IV.	F ₂ CENTER
V.	F _A CENTER
VI.	CONCLUSIONS
REFE	RENCES

DE-EXCITATION PROCESSES OF THE OPTICALLY EXCITED STATES OF THE F CENTERS (Abstract Only)641

H. Okhura

TWO-F	PHOTON SI	PECTROSCOPY IN INSULATING CRYSTALS
	U.M. Gra	assano
ABST	RACT	
Ι.	INTRODU	CTION643
11.	DEFINIT	IONS644
III.	THEORET	ICAL FRAMEWORK
	III.A.	Macroscopic Theory645
		1. Linear Dipole Susceptibility646
		2. Second-Order Electric Dipole Susceptibility646
		3. Third-Order Electric Dipole Susceptibility646
	111 <i>.</i> B.	Microscopic Theory647
IV.	EXPERIM	ENTAL TECHNIQUES650
	IV.A.	Direct Absorption Measurements650
	IV.B.	Indirect Measurements653
v.	EXAMPLE	S655
	V.A.	Color Centers655
	V.B.	Impurity Ions656
	V.C.	Excitons
ACKN	OWLEDGEM	ENTS
REFE	RENCES .	
SPEC	IAL TOPI	CS

PARTICLE	S AND	ELEMENTARY	EXCITATIONS	••••	• • • • •	• • • • •	• • • • • •	• • • • • •	661
G.	Costa								
ABSTRACI									661

I.	INTRODUCTION
II.	QUANTUM MECHANICS OF SYSTEMS WITH INFINITE DEGREES OF FREEDOM
III.	SYMMETRY AND BREAKING: GOLDSTONE MODES
IV.	A PHYSICAL EXAMPLE: SUPERFLUIDITY
v.	LONG-RANGE INTERACTIONS: HIGGS MECHANISM670
VI.	A PHYSICAL EXAMPLE: SUPERCONDUCTIVITY671
VII.	CONCLUSION
REFE	RENCES
CUDET	2CONDUCT I VI TV 675
SUPE	
SUPE	M. J. Graf and J.D. Hettinger
ABSTI	M. J. Graf and J.D. Hettinger
ABSTI	M. J. Graf and J.D. Hettinger RACT
ABSTI	M. J. Graf and J.D. Hettinger RACT
ABSTI I. II. III.	M. J. Graf and J.D. Hettinger RACT
ABSTI I. II. III. IV.	M. J. Graf and J.D. Hettinger AACT
ABSTI I. II. III. IV. V.	M. J. Graf and J.D. Hettinger RACT
ABSTI I. II. III. V. V.	M. J. Graf and J.D. Hettinger RACT

SHORT SEMINARS

THE LUMINESCENT EXCITED STATE OF THE VANADATE ION STUDIED BY OPTICALLY-DETECTED MAGNETIC RESONANCE (J. H. van Tol)689
RARE EARTH SPECTROSCOPY IN GLASSES, A FRACTION (J. Lincoln)689
THE INFLUENCE OF IMPURITIES ON THE QUANTUM YEILD OF
Y ₂ 0 ₃ :3%Eu [•] (W. van Schaik)690
FLUORESCENCE MECHANISMS OF MIXED CRYSTALS
SrBa F :Eu (C. Dujardin)690 1-x x 2
SPECTROSCOPY OF Er ³⁺ :GGG AND CALCULATION OF THE JUDD-OFELT LIFETIME PARAMETERS (B. Dinerman)
LASER SPECTROSCOPIC STUDIES OF SOLID STATE DEFECT CHEMISTRY IN PEROVSKITES (E.M. Standifer)
PICOSECOND TIME-RESOLVED CARS: APPLICATION TO VIBRONS IN MOLECULAR CRYSTALS (J. De Kinder)
EXPERIMENTAL STUDIES OF UPCONVERSION LASER MATERIALS AND UPCONVERSION LASERS (R.A. McFarlane)
LUMINESCENCE OF THE Eu ³⁺ ION IN CALCIUM COMPOUNDS (D. van der Voort)
THEORETICAL STUDY OF ULTRA-FAST DEPHASING BY FOUR-WAVE MIXING (C. Hoerner)
A NEW WAY TO THE RELAXED EXCITED STATE IN LOCALIZED CENTERS: THE PULSE MODEL (M. Dominoni)
PROPOSITION OF EFFECTIVE WAVEFUNCTION FOR 2DEG WITHIN MODFET HETEROSTRUCTURES (E.A. Anagnostakis)
EPITAXY OF CdS-THIN FILMS BY PULSED LASER EVAPORATION (PLE) (M. Müller)
GROWTH AND OPTICAL PROPERTIES OF THIN CdS FILMS (H. Giessen)696
LUMINESCENCE OF NEW STORAGE PHOSPHORS: ALKALINE EARTH FLUORO- HALIDES DOPED WITH DIVALENT YTTERBIUM (W. Schipper)
APPLICATION OF PHOSPHORS IN X-RAY COMPUTED TOMOGRAPHY (W. Rossner)
DISSOCIATION OF POLYATOMIC MOLECULES BY INFRARED LASERS (B. Bowlby)
A QUANTITATIVE ANALYTIC THEORY OF THE SPECTRA OF DIATOMIC MOLECULES (J.F. Ogilvie)
THERMAL BEHAVIOR OF SPECTRAL LINE POSITIONS AND WIDTHS OF Nd ³⁺ IN GSGG (X. Chen)

COMPARISON OF Er ³⁺ SPECTROSCOPY IN DOPED GLASS FIBERS AND IN GLASS BULK SAMPLES (D. Meichenin)
PASSIVE INTRACAVITY STABILIZATION OF WIDE GAIN LASER BY Er ³⁺ - DOPED MATERIALS (B.W. Zhou)
OPTICAL PROPERTIES OF F_3^+ CENTER IN LIF (TRIPLET STATE)
(M. Cremona)
TWO-PHOTON SPECTROSCOPY IN THE F-SHELL (G. Vandenberghe)702
TWO-PHOTON TRANSITION INTENSITIES WITHIN SYMMETRY-ADAPTED
EIGENVECTOR APPROACH: Ni ²⁺ IN O_h SYMMETRY (J. Sztucki)
CHARACTERISTIC ELECTROLUMINESCENCE AT THE SEMICONDUCTOR/ ELECTROLYTE INTERFACE (E. Meulenkamp)
LOCALIZED $3_{\pi\pi^*}$ EXCITATIONS OF [Rh(phpy)_bipy]PF
(phpy = 2-phenylpyridine, bipy = 2,2'-bipyridine) (G. Frei)703
CROSS RELAXATION OF EXCITED STATES IN A ONE-DIMENSIONAL COMPOUND (M.P. Hehlen)
LUMINESCENCE OF THE V = 0 $\overline{\underline{V}}$ COMPLEX (M.F. Hazenkamp)
RADIATIONLESS VIBRONIC RELAXATION AND ELECTRON TRANSFER OF THE F-CENTER IN NaBr (M. Leblans)
LUMINESCENCE OF BROAD BANDS IN Mn-DOPED n-TYPE GaP (T. Monteiro)
OPTICAL SPECTROSCOPY OF THE MATRIX-ISOLATED NH RADICAL (C. Blindauer)
INTERACTION BETWEEN COLOR CENTER AND DISLOCATION IN ALKALI HALIDES (R.B. Pode)
SUMMARY OF THE MEETING (G.F. Imbusch)709
PICTURE OF THE PARTICIPANTS716
PARTICIPANTS

																																												-	2	
INDEX	• •	• •	•		 •	• •	•	•	• •	•	•	•	• •		٠	•	•	• •	 •	•	•	• •	•	•	٠	•	•	• •	• •	•	٠	•	•	•	• •	•	•	٠	•	٠	٠	•	• •	. 1	3	T