INTRODI	UCTION '	IO ENERGY TRANSFER AND RELEVANT ONCEPTS	1
	J. E. 3	Bernard, D. E. Berry and F. Williams	
ABSTRA	CT		2
I.	INTROD	UCTION	3
II.	BASIC	CONCEPTS UNDERLYING ENERGY TRANSFER IN SOLIDS	5
	II.A.	Separation of Electronic and Nuclear Motion	5
	II.B.	One-Electron Approximation	8
	II.C.	Electronic Band Structure	14
		 Case I: Nearly Free Electrons Case II: Tightly Bound Electrons 	20 26
	II.D.	Lattice Dynamics and Phonons	32
		1. Case I: The Case of Small q-Values 2. Case II: The Case of $q = \frac{\pi}{a}$	37 38
	II.E.	The Electron-Phonon Interaction	41
		 Deformation Potential Theory Fröhlich Hamiltonian 	44 47
111.	GENERA	L METHODS OF ENERGY TRANSFER	49
	III.A.	Resonant Energy Transfer	49
	III.B.	Nonresonant Energy Transfer	54
	III.C.	Electronic Charge Transport and Energy Transfer -	58
	III.D.	Energy Transfer by Excitons	65
		 Exciton Structure Exciton Transport 	65 69

	III.E.	Auger Processes as Energy Transfer	73
	III.F.	Inelastic Collisions. Hot Electron Excitation	77
IV.	CLOSIN	IG REMARKS	82
APPEND	IX: EF WI	FECTIVE MASS APPROXIMATION FOR DOPANTS TH COULOMB FIELDS	83
GLOSSA	RY		86
REFERE	NCES		95
ENERGY	TRANSF	ER AMONG IONS IN SOLIDS	103
	B. Di	Bartolo	
ABSTRA	CT		103
Ι.	INTERA	CTION AMONG ATOMS	103
	I.A.	Two-Atom System	103
	I.B.	Dynamical Effects of the Interaction	107
		 Coherent Energy Transfer in a Two- Atom System Incoherent Energy Transfer in a Two- 	109
		Atom System 3. Coherent Energy Transfer in a Linear	111
		Chain 4. Incoherent Energy Transfer in a	114
		Linear Chain	116
	I.C.	The Relevant Energy Transfer Hamiltonian	117
	I.D.	Interaction Between Two Atoms in Solids	119
II.	DIFFER	ENT TYPES OF INTERACTIONS	124
	II.A.	Multipolar Electric Interactions	124
	II.B.	Exchange Interactions	128
	II.C.	Electro-Magnetic Interactions	131
	II.D.	Phonon-Assisted Energy Transfer	133

III.	STATIS MODES	STICAL TREATMENT OF ENERGY TRANSFER. OF EXCITATION	134
	III.A	. Introduction	134
	III.B	• Pulsed Excitation	135
	III.C	. Continuous Excitation	137
IV.	STATIS CASE N	STICAL TREATMENT OF ENERGY TRANSFER. WITH NO MIGRATION AMONG DONORS	139
	IV.A.	Basic Equation	139
	IV.B.	Simple Models	141
		 Perrin Model Stern-Volmer Model 	141 142
	IV.C.	Multipolar Interactions	142
	IV.D.	Exchange Interactions	152
۷.	STATI: CASE N	STICAL TREATMENT OF ENERGY TRANSFER. WITH MIGRATION AMONG DONORS	156
	V.A.	Migration	156
	V.B.	Diffusion	157
	V.C.	Migration as Diffusion Process	159
		 Diffusion Only Diffusion and Relaxation Diffusion, Relaxation and Transfer 	160 160 160
	V.D.	Migration as Random Walk	165
	V.E.	Comparison of Two Models	174
	V.F.	Calculations of Transfer Rates	175
		 Diffusion Model Hopping Model 	175 177
	V.G.	Regimes of Donor Decay	180
		 No Diffusion Diffusion-Limited Decay Fast Diffusion 	180 180 180

	V.H.	Migration in the Case of Inhomogeneous Broadenings of Donors' Levels	181
VI.	COLLE	CTIVE EXCITATIONS	183
	VI.A.	Introduction	183
	VI.B.	Eigenfunctions	186
	VI.C.	Dispersion Relations	190
	VI.D.	Effective Mass	192
	VI.E.	Generalization to Three Dimensions	195
	VI.F.	Periodic Boundary Conditions and Density of States	196
	VI.G.	Interaction of Photons with Collective Excitations	200
ACKNOW	LEDGEM	ENTS	202
REFERE	NCES -		203
MATHEM TRANSF	ATICAL ER	METHODS FOR THE DESCRIPTION OF ENERGY	205
	V. M.	Kenkre	
ABSTRA	СТ		205
Ι.	INTRO	DUCTION	205
	I.A.	Preliminary Remarks	205

	I.B.	Processes and Questions of Interest	207
	I.C.	Some Experiments	208
	I.D.	Outline of This Article	209
11.	THE BA	ASIC TRANSPORT INSTRUMENT: THE FION EQUATION	210
	II.A.	Introduction and the Coherence- Incoherence Problem	210

	II.B.	Motivation for the GME	214
	II.C.	Derivation and Validity of the GME	216
	II.D.	Solution of Foerster's Problem	219
	II.E.	General Remarks About the GME	220
III.	MEMORY	FUNCTIONS: EXPLICIT CALCULATIONS	221
	III.A.	Outline	221
	III.B.	Exact Results for Pure Crystals	221
	111.C.	Exact Results for an SLE	224
	III.D.	Perturbative Evaluation for Linear	226
	TTT.E.	Evaluation from Spectra	220
TV.	CALCIII	ATTON OF OBSERVABLES	227
		Prelude: Calculation of Propagators	223
	IV.A.	fielde. Calculation of Hopagators	229
	IV.B.	Application to Grating Experiments	232
	IV.C.	Capture Experiments	237
۷.	MISCEL	LANEOUS METHODS AND CONCLUSIONS	242
	V.A.	Methods for Cooperative Trap Interactions	242
	V.B.	Conclusion	246
ACKNOW	LEDGEME	ENTS	-247
REFERE	NCES		247
ENERGY	TRANSI	FER IN INSULATING MATERIALS	251
	G. Bla	asse	
ABSTRA	ст		251
Τ.	INTROI	DUCTION	251

II.	SINGLE-	-STEP ENERGY TRANSFER	252
111.	MULTIST	CEP ENERGY TRANSFER	257
IV.	CHARACI	TERISTICS OF MATERIALS	261
۷.	STRONG	TEMPERATURE DEPENDENCE	262
VI.	WEAK TH	EMPERATURE DEPENDENCE	264
	VI.A.	Transition Metal Compounds	264
	VI.B.	Hexavalent Uranium Compounds	268
	VI.C.	Trivalent Rare Earth Compounds	271
VII.	FLUORES	SCENCE LINE NARROWING IN GLASSES	280
ACKNOWI	LEDGEMEN	T	281
REFERE	NCES		281
ENERGY	TRANSFI	ER IN SEMICONDUCTORS	285
	C. Klir	ngshirn	
ABSTRA	CT		285
I.	INTRODU LOOKINO	JCTION, OR THE PHYSICAL PROBLEM OF G THROUGH A WINDOW	285
II.	ENERGY INTO A	TRANSFER FROM AN EXTERNAL PHOTON FIELD SEMICONDUCTOR	287
	II.A.	Photons in Vacuum	287
	II.B.	A Mechanical Model for a Medium	292
	II.C.	The Dielectric Function	295
	II.D.	Polaritons	301
	II.E.	What Happens at the Surface	303
	II.F.	Phonon Polaritons	307
	II.G.	Excitons: Oscillators with Spatial	
		Dispersion	311

•

	II.H.	Exciton-Polaritons and the Problem of Additional Boundary Conditions	315
	11.1.	Experimental Proofs for the Concept of Exciton-Polaritons	320
III.	ENERGY THE PH	TRANSFER FROM EXCITON-POLARITONS TO ONON-FIELD	326
	III.A.	Review of Energy Transfer Processes in Semiconductors	326
	III.B.	Interaction Mechanisms Between Excitons and Phonons	330
	III.C	LO-Phonon Assisted Luminescence	333
	III.D.	Resonant Brillouin Scatterin	338
	III.E.	Raman Scattering	342
	III.F.	Resonant Raman Scattering, Hot Luminescence, Thermalisation and Photoluminescence	346
IV.	ENERGY POLARI	TRANSFER BETWEEN VARIOUS EXCITON- TON MODES BY NONLINEAR INTERACTION	348
	IV.A.	Nonlinear Interaction Between Phonons	348
	IV.B.	Two-Photon Raman Scattering	349
	IV.C.	Degenerate Four Wave Mixing	351
	IV.D.	Laser Induced Gratings	353
v.	CONCLU	SION	355
APPEND	ICES		355
APPEND	IX A:	Exciton-Polaritons in Real Semiconductors	355
APPEND	IX B:	Surface Polaritons	359
APPEND	IX C:	The Role of Impurities	363
ACKNOW	LEDGEMT	NTS	366
REFERE	NCES		367

TRIPLET MATTER	T EXCITATION TRANSFER STUDIES IN ORGANIC CONDENSED		
	V. Ern		
ABSTRA	CT	371	
I.	INTRODUCTION	371	
11.	INTRODUCTION TO MOLECULAR CRYSTAL BAND STATES	373	
111.	DIRECT APPROACH FOR STUDY OF TRIPLET TRANSPORT VIA DELAYED FLUORESCENCE	381	
IV.	THE TRIPLET EXCITON MACROSCOPIC DIFFUSION EQUATION	387	
۷.	EXPERIMENTAL DETERMINATION OF THE TRIPLET EXCITON DIFFUSION TENSOR	390	
	V.A. Time-Dependent Buildup and Decay Transient Experiments	391	
	 Buildup of Delayed Fluorescence Decay of Delayed Fluorescence 	39 2 39 3	
	V.B. Phase-Lag Steady-State Experiments	396	
VI.	POSSIBILITY OF DETECTING COHERENCE EFFECTS IN TRIPLET TRANSPORT	401	
	VI.A. Buildup and Decay Transient Experiments	403	
	VI.B. Phase-Lag Steady-State Experiments	409	
REFERE	NCES	413	
ENERGY	TRANSFER IN SOLID RARE GASES	417	
	N. Schwentner, E. E. Koch and J. Jortner		
ABSTRA	CT	417	
I.	INTRODUCTION	418	
II.	ELEMENTARY EXCITATIONS OF RARE GAS CRYSTALS	419	
	II.A. Lattice Vibrations	419	

.

	II.B.	Resonant Electronic States	420
	11.C.	Localized Electronic States	424
	II.D.	Localization (Self-Trapping) of Excitons	428
		 Exciton-Phonon Scattering Self-Trapping Microscopic Picture 	428 429 430
111.	ELECTR IN RAR	ONIC STATES OF GUEST ATOMS AND MOLECULES E GAS MATRICES	432
	III.A.	Transition Energies	432
	III.B.	Lattice Relaxation and Line Shapes	434
IV.	ELECTR	ONIC AND VIBRATIONAL RELAXATION	434
v.	ENERGY	TRANSFER	437
	V.A.	Concepts	437
	V.B.	Migration of Free Excitons	441
		 Transfer to Guests Transfer to Boundaries 	441 449
	V.C.	Energy Transfer Between Localized Centers	454
		 Electronic Energy Transfer of Self- Trapped Excitons to Guest Centers Electronic Energy Transfer Between 	454
		Guest Centers 3. Vibrational Energy Transfer Between	456
		Guest Molecules	456
	V.D.	Energy and Mass Transport in Liquid Rare Gases	459
VI.	HIGH B	EXCITATION DENSITIES	460
	VI.A.	Laser Applications	460
	VI.B.	Loss Processes and Electron Plasma	463
REFERE	NCES		467

ENERGY	TRANSFER AND LOCALIZATION IN RUBY	471
	G. F. Imbusch	
ABSTRAC	T	471
I.	THE LOCALIZATION OF OPTICAL EXCITATION IN A SOLID	471
II.	ENERGY TRANSFER IN RUBY - EARLY EXPERIMENTS	474
111.	THE SEARCH FOR MOBILITY EDGES IN THE RUBY R1 LINE	480
IV.	FLUORESCENCE LINE NARROWING AND HOLE BURNING EXPERIMENTS IN RUBY	482
v.	DEGENERATE FOUR WAVE MIXING EXPERIMENTS IN RUBY: AN ATTEMPT TO DIRECTLY MEASURE THE ENERGY MIGRATION DISTANCE	1.86
VI.	ELECTRIC FIELD EXPERIMENTS IN RUBY	480
REFEREI	ICES	403
		475
ENERGY	TRANSFER AND IONIC SOLID STATE LASERS	497
	F. Auzel	
ABSTRAC	T	497
I.	INTRODUCTION	497
II.	ENERGY TRANSFER SCHEME FOR PUMPING EFFICIENCY IMPROVEMENT	498
	II.A. Stokes Processes	498
	 Energy Transfer Towards Pumping Levels Deactivation by Energy Transfer of 	498
	Levels in Self-saturating and Cascade Lasers	501
	II.B. Anti-Stokes Processes and Up-Conversion Pumped Lasers	504
III.	DRAWBACKS INTRODUCED BY ENERGY TRANSFER	504
	III.A. Stokes Processes	505

		1. Self-Quenching by Energy Diffusion	505
		 Role of Crystal Field Strength 	506
	III.B.	Anti-Stokes Processes Up-conversion and Reabsorption	508
IV.	CONCLUS	SION	509
REFERE	NCES		510
A SCAL MEANIN	AR FIELI G AND AH	O STRENGTH PARAMETER FOR RARE-EARTH IONS: PPLICATION TO ENERGY TRANSFERS	511
	F. Auze	21	
ABSTRA	CT		511
I.	INTRODU	JCTION	511
II.	THEORE'	TICAL INVESTIGATION OF MAXIMUM STARK SPLITTINGS	513
111.	DISCUSS	SION OF THE APPROXIMATION	516
IV.	APPLICA CALCULA	ATION TO MAXIMUM STARK SPLITTING ATIONS: COMPARISON WITH EXPERIMENTS	518
	IV.A.	Given Ion (Nd ³⁺) and Crystal (LaF ₃), Comparison of $N_{k'}^{*}$ from Maximum Splitting to N_{V}^{*} from $B_{q'}$'s for Different J-Terms	518
	IV.B.	Given J-Term (⁴ I9/2) of Given Ion (Nd ³⁺), Study of Maximum Splitting for Different Crystals with Different Site Symmetry	518
	IV.C.	Given J-Term (⁴ I _{13/2}) and Crystal (LaF ₃), Study for Different Ion	519
v.	CONCLU	SION	520
REFERI	ENCES		520

ENERGY TRANSFER BETWEEN INORGANIC ION IN GLASSES ----- 521

ABSTRA	CT	521
Ι.	INTRODUCTION	521
11.	URANYL ION AND RARE EARTH IONS	524
III.	Bi ³⁺ , Eu ³⁺ and Nd ³⁺	524
IV.	Cr^{3+} and Nd ³⁺ and Yb ³⁺ IN LANTHANUM PHOSPHATE GLASS	525
۷.	ENERGY TRANSFER FROM Mn ²⁺ to Er ³⁺ IN FLUORIDE GLASSES AND Mn ²⁺ to Nd ³⁺ , Ho ³⁺ and Er ³⁺ IN OXIDE GLASSES	529
	V.A. Manganese	529
	V.B. Erbium	532
	V.C. Energy Transfer Between Manganese and Erbium	533
VI.	CONCLUSIONS	533
ACKNOW	LEDGEMENT	534
REFERE		524
REFERE		554
NON-EQ	UILIBRIUM CONCEPTS IN SOLAR ENERGY CONVERSION	537
	P. T. Landsberg	
ABSTRA	CT	537
I.	GENERAL CONCEPTS FOR RADIATION	537
	I.A. Introduction	537
	I.B. Photons in Discrete Quantum States	538
	I.C. Continuous Photon Spectrum	540
	I.D. Photon Fluxes	541
	I.E. The Case of Black-Body Radiation	542
	I.F. Simple Applications of the Energy Flux Concept	543
	I.G. Fluxes Compared with Equilibrium Quantities	545

II.	DILUTE	D BLACK-BODY RADIATION	547
	II.A.	DBR: Definition and Properties	547
	II.B.	Fluxes of DBR	549
	11.C.	DBR as Non-Equilibrium Radiation	551
	II.D.	Application of DBR to Solar Energy Conversion	552
	II.E.	Discussion	554
	II.F.	A More Rigorous Version of Section II.D	556
	II.G.	An Argument from Availability	558
III.	STATIS	TICAL THERMODYNAMICS OF CASCADE CONVERTERS	559
	III.A.	Some Thermodynamic Results	559
	III.B.	Discussion	562
	111.C.	The Absorption Coefficient; The Photon Chemical Potential	564
	III.D.	Solar Cell Equation in Terms of Photon (Number) Fluxes	566
	III.E.	The Maximum Efficiency of an Infinite Stack of Solar Cells	568
	111.F.	Additional Comments: Independent Derivation of S for the Stack	573
	111.G.	Additional Comment: The Solar Cell Equation and Standard Approximations	576
	III.H	The Finite Stack	581
IV.	PROBLE	MS	586
۷.	MAIN S	SYMBOL USED AND REFERENCES	587
VI.	APPENI)IX	589
REFERE	NCES		590

xxi

xxii

LONG SEMINARS

MAGNET	O-OPTICAL STUDY OF ENERGY TRANSFER IN RUBY	593	
	M. Ferrari, L. Gonzo, M. Montagna, O. Pilla, and G. Viliani		
ABSTRA	CT	593	
I.	INTRODUCTION	593	
11.	EXPERIMENTAL	594	
III.	EXPERIMENTAL RESULTS		
	III.A. Lifetime Measurements	594	
	III.B. Transferred Intensities vs. Magnetic Field	595	
	III.C. Excitation Spectra	597	
IV.	DISCUSSION	598	
ACKNOW	LEDGEMENT	601	
REFERE	NCES	601	
SPECTR	OSCOPIC STUDIES OF ENERGY TRANSFER IN SOLIDS	603	
	G. Boulon		
ABSTRA	CT	603	
I.	INTRODUCTION	603	
II.	MATERIAL AND EXPERIMENTAL EQUIPMENT	604	
III.	USEFUL DATA ABOUT THEORETICAL APPROACHES TO THE ENERGY TRANSFER		
	III.A. Resonant Radiative Energy Transfer	604	
	III.B. Resonant Nonradiative Energy Transfer	605	
	 Without Diffusion Among S Ions With Diffusion Among S Ions 	605 607	

	III.C. Up-conversion Processes by Energy Transfer	608	
	III.D. Influence of the Traps in the Materials	608	
IV.	ENERGY TRANSFER IN DOPED MATERIALS	611	
	IV.A. Bi ³⁺ - Eu ³⁺ Codoped Germanate Glass		
	or $Lu_2Si_2O_7$ (rystal	611	
	IV.B. $Ky_{3}F_{10}(Eu^{2+})$	612	
	IV.C. LaCl ₃ - Gd ³⁺	614	
۷.	ENERGY TRANSFER IN STOICHIOMETRIC MATERIALS	615	
	V.A. Manganese Compounds	616	
	V.B. Rare-earth Compounds	617	
VI.	SUMMARY	619	
ACKNOW	LEDGEMENTS	620	
REFERE	NCES	620	
DYNAMI	DYNAMICAL MODELS OF ENERGY TRANSFER IN CONDENSED MATTER		
	J. Klafter and A. Blumen		
ABSTRA	CT	621	
I.	INTRODUCTION	621	
II.	DIRECT TRANSFER	623	
III.	DIFFUSION IN THE FRAMEWORK OF THE CTRW	628	
IV.	TRAPPING IN THE CTRW MODEL	633	
ACKNOWLEDGEMENTS			
REFERENCES			

xxiv	

Ì
•
l.
1
ŀ
ľ
,
)
•
6

•

I.	INTRODUCTION	655	
II.	ORIGIN OF THE TIME DEPENDENCE		
111.	METHODS OF THEORETICAL ANALYSIS		
IV.	EXPERIMENTAL TECHNIQUES	660	
v.	EXAMPLES OF TIME-RESOLVED ENERGY TRANSFER STUDIES	662	
	V.A. Energy Transfer Between Eu ³⁺ Ions in Eu _x Y _{1-x} P ₅ 0 ₁₄ Crystals	662	
	V.B. Energy Transfer Among Nd ³⁺ Ions in Lightly Doped Solids	665	
	V.C. Exciton Diffusion in Nd _x La _{1-x} $P_5 O_{14}$ Crystals -	667	
VI.	CONCLUSIONS	669	
REFERE	NCES	670	
TRENDS	IN SCIENTIFIC COMPUTING	673	
	C. K. Landraitis		
ABSTRA	CT	673	
I.	THE PROBLEM-SOLVING CYCLE	673	
II.	PROVIDING A BETTER ENVIRONMENT FOR SCIENTIFIC COMPUTING	674	
	II.A. Computer-Based Local and Long-Distance Networks	674	
	II.B. Hardware and Software Tools	674	
	 Video Display Technology Direct Input Software 	674 675 675	
III.	ACHIEVING FASTER COMPUTATION	675	
	III.A. The Need for Faster Computation	675	
	III.B. Historical Trends	676	

			•
~	~		۰.
ж	ж	v	
		•	•

			1000 0.00
	III.C.	Conventional Processor Designs	676
	III.D.	Concurrent Operation of Computer Subsystems	677
	III.E.	Pipelining	677
	III.F.	The Potential for Exploiting Parallelism	677
	III.G.	Radical Innovations in Processor Design	678
IV.	COMPUTA	FIONAL MODELLING AND SIMULATION	679
REFEREN	ICES		679
<u>SHORT</u>	SEMINARS DNDUCTIVI R. Lindu	TTY OF INDIUM IN SILICON	681
NONLINI YIELDIN	EAR ENERG NG BISTAN K. Bohne	GY TRANSFER IN SEMICONDUCTORS BILITY	682
LUMINES	SCENCE AN J. Mares	ND ENERGY TRANSFER IN YA1G:Nd,Ce	683
ENERGY	TRANSFEI P. A. M.	R EFFECTS IN NaEuTiO ₄ Berdowski	684
ENERGY HALI DE	TRANSFEI CRYSTALS U. Kambi	R IN ANTIFERROMAGNETIC ALKALI MANGANESE	685

CONTENTS	xxvii
AUGER EFFECT DUE TO SHALLOW DONORS IN CdF2:Mn LUMINESCENCE -	686
A. Suchocki	
ENERGY TRANSFER PROCESSES IN ZnSe:Ni,Fe	687
A. Karipidou	
ON THE ROLE OF NONLOCALIZED EXCITATION MECHANISMS IN THE GENERATION OF RED Er ³⁺ EMISSION IN CdF ₂ :Er,Yb	688
A. Stapor	
THE GENERAL THREE-DIMENSIONAL HAKEN-STROBL MODEL	689
I. Rips	
THE LUMINESCENCE SPECTRUM OF UO2MoO4	690
CONTRIBUTORS	691
INDEX	693