Contents

v vii	Preface Opening address
	Chapter 1: Invited papers
1-17	Theory of point defects and deep impurities in semiconductors J Bernholc, N O Lipari, S T Pantelides and M Scheffler
19–31	Theory of the silicon vacancy: an Anderson negative-U system G A Baraff, E O Kane and M Schlüter
33–43	Irradiation-induced defects in germanium J C Bourgoin, P M Mooney and F Poulin
45–53	Interstitials in germanium H Saito, N Fukuoka and H Yoshida
55–67	Electron spin resonance of defects in III—V semiconductors J Schneider and U Kaufmann
69–80	Optical resonance and magneto-optical measurements of defects in GaP and GaAs B C Cavenett
81–94	Electron paramagnetic resonance of native defects in diamond CAJAmmerlaan
95–109	In situ x-ray topographic study of dislocations in silicon crystals growing from the melt J Chikawa and F Sato
111-122	Channelling studies of defect—impurity interactions in silicon F W Saris
123-138	Oxidation- and diffusion-induced defects in silicon M Watanabe, Y Matsushita and K Shibata
139–145	Summary of the 1980 conference G D Watkins
	Chapter 2: Theory
147-150	A comparative discussion of the local density and the tight binding approximations for the vacancy in silicon P Pecheur, G Toussaint and M Lannoo
151–156	Electronic structure of a vacancy at the Si(100) surface J Pollmann

	~
Y	Contents

- 157-162 Strong interaction between electron and the lattice at deep-level defects Y Shinozuka
- 163-168 Vibrational properties of the vacancy in silicon: application to the formation entropy

 G Allan and M Lannoo
- 169-174 EHT calculations of positron lifetimes in irradiated silicon ND Wilsey, JP Karins, JB Shapiro, VA Singh and JW Corbett
- 175-180 Electronic structure of interstitially implanted tin impurities in group IV semiconductors

 E Antoncik
- 181-186 Electron-hole recombination rate of donor-acceptor pairs in polar semiconductors

 E Kartheuser and C Hilbert

Chapter 3: Germanium

- 187-192 Quenched-in shallow acceptors in germanium Y Kamiura, F Hashimoto, T Takada, Y Sakaji and T Hattori
- 193-198 Annealing study of indium-implanted germanium Y Bamba, S Tatsuta, T Sakurai and H Hashimoto

Chapter 4: Silicon

- 199-204 Negative-U for point defects in silicon

 G D Watkins, A P Chatteriee and R D Harris
- 205-210 Effects of neutron irradiation on the Raman spectrum of silicon M Chandrasekhar, H R Chandrasekhar, J M Meese and S L Thaler
- 211-216 The 1.045 eV vibronic band in irradiated silicon doped with lithium L Canham, G Davies and E C Lightowlers
- 217-222 Transition metal impurities in silicon L C Kimerling, J L Benton and J J Rubin
- 223-228 A new method of recoil implantation in Si using high-energy electron bombardment

 T Wada and M Kaneiwa
- 229-233 Some aspects of impurities and defects in heteroepitaxial silicon thin films Yu Y-h, Chao T-n and Zan Y-d
- 235-240 Nearest-neighbor effects on the energy levels of acceptors in silicon-rich Si-G alloys

 R Baron, M H Young, H Winston, H Kimura, G S Mitchard and T C McGill

Contents xi

241-246 The utility of positrons for studies of vacancy-type defects in semiconductors M Shimotomai, Y Ohgino, H Fukushima, Y Nagayasu, T Mihara, K Inoue and M Doyama

Chapter 5: Diamond

- 247-252 Diffusion and aggregation of point defects in diamond A T Collins
- 253-256 Subthreshold defect formation in natural diamond A A Gippius, V S Vavilov and A M Zaitsev

Chapter 6: III-V compounds

- 257-262 EPR of defects in electron-irradiated InP:Fe TA Kennedy and ND Wilsey
- 263-268 Thermal and recombination-enhanced annealing of gamma-ray induced defects in GaAs_{1-x}P_x alloys

 J Shirafuji, T Kakiuchi, K Oka and Y Inuishi
- 269-274 Charge state effects on the annealing of the electron irradiation induced defects in GaAs

 D. Pons
- 275-280 Investigation of some optical properties of InP, InAs and InP_xAs_{1-x} compounds containing radiation defects

 GP Kekelidze, NP Kekelidze, TM Gogashvili and KO Ovcharenko
- 281-286 Identification and analysis of near-infrared absorption bands in undoped and Cr doped semi-insulating GaAs crystals

 G M Martin, G Jacob, G Poiblaud, A Goltzene and C Schwab
- 287-292 Electronic and geometric structure of the point defect GaP: O G A Baraff and M Schlüter
- 293-298 Mechanism of electron scattering in irradiated indium arsenide and indium phosphide crystals

 GP Kekelidze, NP Kekelidze, LS Milovanova and AA Abo el Khier
- 299-304 Effects of radiation defects on the conduction band minimum of n-GaP T Endo, Y Nakanishi and T Wada
- 305-310 Processing-induced defects in n-type Al_{0.3}Ga_{0.7}As LPE layers S S Li, D W Schoenfeld, T T Chiu, C Y Lin and S M Bedair
- 311-315 Low temperature annealing of high-purity n-type indium antimonide I Ohno, M Koike and I Fujisawa
- 317-322 Helium ion irradiation damage in GaAs at 293 and 80 K studied by carrier-trapping-profile and DLTS techniques

 A A Rezazadeh and D W Palmer

xii	Contents
323–328	Study of defect states by transient capacitance methods in proton irradiated GaAs at low temperature G Guillot, S Loualiche, A Nouailhat and G M Martin
329-334	Proton implantation damages in GaAs studied by capacitance transient spectroscopy Y Yuba, K Gamo, K Murakami and S Namba
335-340	Defect characterization and thermal annealing study of 200 KeV proton irradiated n-GaAs LPE layers S. S. Li, T. T. Chiu, D. W. Schoenfeld and R. Y. Loo
341-346	Deep levels in Be implanted GaAlAs R Magno, R Shelby, N D Wilsey, S M Bedair and J Comas
347-352	Radiation damage defect profiles in semiconductors T Wada and E Matsumoto
	Chapter 7: II–VI compounds
353-358	An ODMR study of the zinc vacancy in zinc selenide K M Lee, Le Si Dang and G D Watkins
359–364	Irradiation induced radiative and non radiative centers in ZnTe J L Pautrat, E Molva, N Magnéa and J C Pfister
365–370	The study of native defect centers in n-CdTe single crystals T Takebe, H Ono, T Hirata, J Saraie and H Matsunami
371–376	Effects of high energy electron-introduced acceptors on electric properties in CdS M Kitagawa, K Morimoto and T Yoshida
377–382	Investigation of deep levels in n-type CdTe epitaxial layers H Sitter, W Huber and A Lopez-Otero
383–388	Donor ion implantation in ZnSe and defect impurity interaction F Rabago-Bernal, A Heurtel, R Triboulet, R Legros and Y Marfaing
	Chapter 8: Dislocation
389-393	Deep levels associated to ' 60° ' dislocations for the 'shuffle' and the 'glide' set configurations of sphalerite semiconductors JL Farvacque, D Ferre and P Lenglart
395400	Electric potentials in plastically deformed Si and Ge S Kh Mil'shtein and A M Senderichin
401-406	Dislocations in silicon L C Kimerling, J R Patel, J L Benton and P E Freeland

Contents xiii

407–412	ESR in plastically deformed silicon crystals
	M Suezawa, K Sumino and M Iwaizumi

- 413-418 The replication, generation and reduction of dislocations during iso-epitaxy on InP substrates

 S. Mahajan, V. G. Keramidas, A. K. Chin, S. N. G. Chu, W. A. Bonner and D. D. Manchon Jr.
- 419-424 Defects in In_{0.53}Ga_{0.47}As ternary layer grown on InP substrate by liquid phase epitaxy

 S Komiya, T Tanahashi, K Akita and T Kotani
- 425-430 Investigation on the damage caused by reactive sputter etching of silicon substrates

 N Yabumoto, M Oshima, Y Ozaki and K Hirata
- 431-436 Nature of dark defects revealed in the InGaAsP/InP double-heterostructure light emitting diodes aged at high temperature O Ueda, S Yamakoshi, S Komiya and T Kotani
- 437-441 Simulation of degradation behavior of $InP/In_{1-x}Ga_xAs_yP_{1-y}$ heterostructures by optical excitation

 S Mahajan, W D Johnston Jr, M A Pollack and R E Nahory

Chapter 9: High-voltage electron microscopic observation

- 443-448 In-situ observation of behaviour of defect clusters in CdS under irradiation by HVEM

 T Yoshiie, H Iwanaga, N Shibata, M Ichihara, K Suzuki and S Takeuchi
- 449-454 High voltage electron microscopy study of electron radiation damage and properties of point defects in germanium

 M Kiritani and M Hirata
- 455-460 High voltage electron microscopic observation of defects in silicon crystals H Asahi, R Oshima and F E Fujita
- 461-466 Diffusion coefficient of self-interstitials determined by bulk stacking fault growth in CZ silicon

 K Wada and N Inoue

Chapter 10: Laser annealing

- 467-472 Pulsed Raman temperature measurements of laser-heated silicon A Compaan and H W Lo
- 473-478 Effects of dense carrier plasma during pulsed laser annealing JA Van Vechten

XIV	Contents
479–484	Variation of semiconductor band gaps with lattice temperature and with carrier temperature when these are not equal $JA\ Van\ Vechten\ and\ M\ Wautelet$
485–490	Laser annealing of compensating defects in B-implanted Si J Suski, H Rzewuski, J Krynicki and R Grötzschel
491–496	Substitutional nitrogen in laser-annealed ion-implanted silicon K L Brower
497–501	Laser annealing of defects in ion-implanted silicon Y Sasaki, K Tsujimoto, T Suzuki, K Itoh and T Mitsuishi
503-508	Furnace annealing behaviour of ion-implanted laser-annealed silicon M Miyao, K Itoh, M Tamura and T Tokuyama
509-514	Rapid quenching of defects and crystal regrowth during millisecond and picosecond laser annealing of silicon H Baumgart, F Phillipp, R Uebbing and G A Rozgonyi
515-519	Laser annealing of silicon on sapphire Liu X-h, Zhou Z-y, Jiao J, Lin C-l, Zhang X-k and Wang Y
521-525	Subthreshold laser annealing in ion implanted silicon A Blosse, M H Gallati and J C Bourgoin
	Chapter 11: Oxide-related defects
527–532	Chapter 11: Oxide-related defects Nucleation rate of oxide precipitates in CZ silicon J Osaka, N Inoue and K Wada
527–532 533–538	Nucleation rate of oxide precipitates in CZ silicon
	Nucleation rate of oxide precipitates in CZ silicon J Osaka, N Inoue and K Wada Defects in Si on buried SiO ₂ layer formed by very high dose oxygen-implantation
533–538	Nucleation rate of oxide precipitates in CZ silicon J Osaka, N Inoue and K Wada Defects in Si on buried SiO ₂ layer formed by very high dose oxygen- implantation T Hayashi, H Okamoto and Y Homma Enhanced annealing phenomenon of sputtering damage in SiO ₂ —Si system
533–538 539–544	Nucleation rate of oxide precipitates in CZ silicon J Osaka, N Inoue and K Wada Defects in Si on buried SiO ₂ layer formed by very high dose oxygen- implantation T Hayashi, H Okamoto and Y Homma Enhanced annealing phenomenon of sputtering damage in SiO ₂ —Si system K Hara, T Itoh, Y Tsuzuki and Y Suzuki X-ray and secondary electron effects on the trap generation in Si—SiO ₂ inter- face at electron beam lithography
533–538 539–544 545–550	Nucleation rate of oxide precipitates in CZ silicon J Osaka, N Inoue and K Wada Defects in Si on buried SiO ₂ layer formed by very high dose oxygen-implantation T Hayashi, H Okamoto and Y Homma Enhanced annealing phenomenon of sputtering damage in SiO ₂ —Si system K Hara, T Itoh, Y Tsuzuki and Y Suzuki X-ray and secondary electron effects on the trap generation in Si—SiO ₂ interface at electron beam lithography T Sugano and C F Yeh Deep trap density and energy levels in Si ₃ N ₄ layers on Si substrates
533–538 539–544 545–550	Nucleation rate of oxide precipitates in CZ silicon J Osaka, N Inoue and K Wada Defects in Si on buried SiO ₂ layer formed by very high dose oxygen-implantation T Hayashi, H Okamoto and Y Homma Enhanced annealing phenomenon of sputtering damage in SiO ₂ —Si system K Hara, T Itoh, Y Tsuzuki and Y Suzuki X-ray and secondary electron effects on the trap generation in Si—SiO ₂ interface at electron beam lithography T Sugano and C F Yeh Deep trap density and energy levels in Si ₃ N ₄ layers on Si substrates S Fujita, Won L H, M Nishihara and A Sasaki
533–538 539–544 545–550 551–556	Nucleation rate of oxide precipitates in CZ silicon J Osaka, N Inoue and K Wada Defects in Si on buried SiO ₂ layer formed by very high dose oxygen-implantation T Hayashi, H Okamoto and Y Homma Enhanced annealing phenomenon of sputtering damage in SiO ₂ —Si system K Hara, T Itoh, Y Tsuzuki and Y Suzuki X-ray and secondary electron effects on the trap generation in Si—SiO ₂ interface at electron beam lithography T Sugano and C F Yeh Deep trap density and energy levels in Si ₃ N ₄ layers on Si substrates S Fujita, Won L H, M Nishihara and A Sasaki Chapter 12: Diffusion Diffusion mechanism of phosphorus and arsenic in silicon