CONTENTS

PREFACE			xxi
I.	INTRODUCTION		1
	SU	MMARY	1
	1.	CRITICAL POINTS AND ORDER	
		PARAMETERS	1
	2.	QUALITATIVE PICTURE	5
	3.	THERMODYNAMIC PROPERTIES	
		AND EXPONENTS	10
	4.	FLUCTUATIONS OF THE ORDER	
		PARAMETER, SCATTERING	
		EXPERIMENTS, THE EXPONENT η	16
	5.	OBSERVATIONS ON OTHER KINDS	
		OF CRITICAL POINTS	21
	6.	SUMMARY OF QUALITATIVE	
		FEATURES OF STATIC PHENOMENA	32
	7.	MEAN FIELD THEORY	34
п.	MC	DELS AND BASIC CONCEPTS	40
	SU	MMARY	40
	1.	SEQUENCE OF MODELS	40
	2.	CLASSICAL MODELS OF THE CELL	
		HAMIL TONIAN	45

	3.	STATISTICAL MECHANICS	50
	4.	BLOCK HAMILTONIANS AND KADANOFF	
		TRANSFORMATIONS	56
	5.	GINZBURG-LANDAU FORM	67
III.	TH	E GAUSSIAN APPROXIMATION	72
	SUI	MMARY	72
	1.	MOST PROBABLE VALUE AND	
		GAUSSIAN APPROXIMATION	73
	2.	MINIMUM OF THE GINZBURG-LANDAU	
		HAMILTONIAN, LANDAU THEORY	76
	3.	GAUSSIAN APPROXIMATION FOR	
		$T > T_c$	82
	4.	GAUSSIAN APPROXIMATION FOR	
		$T < T_c$	86
	5.	THE CORRELATION LENGTH AND	
		TEMPERATURE DEPENDENCE	89
	6.	SUMMARY OF RESULTS AND THE	
		GINZBURG CRITERION	92
	7.	FLUCTUATION AND DIMENSION	96
	8.	DISCUSSION	100
IV.	THE SCALING HYPOTHESIS		103
	SU	MMARY	103
	1.	THE CORRELATION LENGTH AND	
		THE SCALING HYPOTHESIS	103
	2.	SCALE TRANSFORMATION AND	
		DIMENSIONAL ANALYSIS	108
	3.	DISCUSSION	114
v.	TH	E RENORMALIZATION GROUP	116
	SU	MMARY	116
	1.	MOTIVATION	116
	2.	DEFINITION OF THE RENORMALIZA-	
		TION GROUP (RG)	119
	3.	ALTERNATIVES IN DEFINING THE RG	129
	4.	CONCLUDING REMARK	133

x

CONTENTS

VI.	FIXED POINTS AND EXPONENTS	134		
	SUMMARY	134		
	1. THE FIXED POINT AND ITS			
	NEIGHBORHOOD	135		
	2. LARGE s BEHAVIOR OF R _s AND			
	CRITICAL EXPONENTS	139		
	3. THE FREE ENERGY	149		
	4. CRITICAL REGION	157		
	5. SUMMARY AND REMARKS	159		
VII	THE GAUSSIAN FIXED POINT AND FIXED			
	POINTS IN $4 - \varepsilon$ DIMENSIONS	163		
	SUMMARY	163		
	1. THE GAUSSIAN FIXED POINT	164		
	2. THE LINEARIZED RG NEAR THE			
	GAUSSIAN FIXED POINT	169		
	3. RELEVANT, IRRELEVANT, AND			
	MARGINAL PARAMETERS, SCALING			
	FIELDS, AND CROSSOVER	179		
	 CRITICAL EXPONENTS FOR d > 4 	185		
	5. THE RG FOR $d = 4 - \epsilon$ AND FIXED			
	POINTS TO $O(\varepsilon)$	188		
	6. EFFECT OF OTHER $O(\epsilon^2)$ TERMS			
	IN R _s µ	207		
VIII.	RENORMALIZATION GROUPS IN			
	SELECTED MODELS	219		
	SUMMARY	219		
	1. THE RG IN THE LARGE-n LIMIT	220		
	2. WILSON'S RECURSION FORMULA	229		
	3. APPLICATION TO THE $n \rightarrow \infty$	240		
	4. DEFINITIONS OF THE RG FOR			
	DISCRETE SPINS	244		
	5. NUMERICAL WORK ON THE RG FOR			
	TWO-DIMENSIONAL ISING SYSTEMS	260		
	6. DISCUSSION	271		

xi

CONTENTS	5
----------	---

IX.	PE	RTURBATION EXPANSIONS	277
	SUMMARY		
	1.	USE OF PERTURBATION THEORY IN	
		STUDYING CRITICAL PHENOMENA	278
	2.	PERTURBATION EXPANSION OF THE	
		GINZBURG-LANDAU MODEL	280
	3	DIVERGENCE OF THE PERTURBATION	
	5.	EXPANSION AT THE CRITICAL POINT	298
	1	THE 1/2 EXPANSION OF CRITICAL	270
	4.	THE I'LL EXPANSION OF CHILDRE	201
	F		501
	5.	THE C EXPANSION OF CRITICAL	200
	,	EXPONENTS	309
	6.	SIMPLE ILLUSTRATIVE CALCULA-	
	-	TIONS, η AND α	314
	7.	THE PERTURBATION EXPANSION IN	
		THE PRESENCE OF A NONZERO $\langle \sigma \rangle$	324
	8.	REMARKS	336
	9.	THE RG IN THE PERTURBATION	
		EXPANSION	339
	10.	ANISOTROPIC PARAMETERS AND	
		COMMENTS ON THE LIQUID-GAS	
		CRITICAL POINT	346
	11.	TABLES OF EXPONENTS IN ϵ AND	
		1/n EXPANSIONS	354
х.	TH	E EFFECT OF RANDOM IMPURITIES	
	ANJ	D MISCELLANEOUS TOPICS	359
	SUN	MMARY	359
	1.	RANDOM IMPURITIES	359
	2.	THE RG APPROACH TO NONMAGNETIC	
	-•	IMPURITIES	370
	3	FIXED POINT STABILITY CRITERIA	
	5.	AND OTHER IMPURITIES	382
	4	COMMENTS ON GRAPHS	390
	5	THE SELF-AVOIDING RANDOM WALK	- , -
	5.	PROBLEM	400
	6	OTHER NON-IDEAL FEATURES OF	
	0.	REAL SYSTEMS	414

,

XI.	INI	RODUCTION TO DYNAMICS	420
	SUI	MMARY	420
	1.	INTRODUCTION	420
	2.	BROWNIAN MOTION AND KINETIC	
		EQUATIONS	425
	3.	RELAXATION TIMES	432
	4.	ELIMINATION OF FAST MODES	435
	5.	RESPONSE FUNCTIONS AND CORRE-	
		LATION FUNCTIONS	439
	6.	THE VAN HOVE THEORY	442
XII.	TH	E RENORMALIZATION GROUP IN	
	DY	NAMICS	450
	SUI	MMARY	450
	1.	DEFINITION OF THE RG IN DYNAMICS	450
	2.	TRANSFORMATION OF CORRELATION	
		FUNCTIONS AND RESPONSE FUNCTIONS	454
	3.	FIXED POINTS, CRITICAL BEHAVIOR,	
		AND DYNAMIC SCALING	458
XIII.	SIN	IPLE DYNAMIC MODELS	464
	SUI	MMARY	464
	1.	THE TIME-DEPENDENT GINZBURG-	
		LANDAU MODELS (TDGL)	465
	2.	EFFECTS OF SLOW HEAT CONDUCTION	472
	3.	THE ISOTROPIC FERROMAGNET	488
	4.	UNIVERSALITY IN CRITICAL DYNAMICS	494
XIV.	\mathbf{PE}	RTURBATION EXPANSION IN DYNAMICS	498
	SUI	MMARY	498
	1.	ITERATION SOLUTION OF KINETIC	
		EQUATIONS	498
	2.	REPRESENTATION OF TERMS BY	
		GRAPHS, RULES OF CALCULATION	501
	3.	THE FLUCTUATION-DISSIPATION	
		THEOREM	510

	4. 5.	GRAPHS FOR HIGHER RESPONSE AND CORRELATION FUNCTIONS ADDITIONAL MODES AND MODE-MODE COUPLING TERMS	516 520
APPENDIX		528	
	1.	AN ALTERNATIVE FORMULATION OF COARSE GRAINING, THE CLASSICAL FIELD CONFIGURATIONS	528
	2.	SMOOTH CUTOFF	535
REFERENCES			542
INDEX	ζ		555