CONTENTS

												PAGE
PREFACE TO DOVER EDITION	•	•	•		•	•	•	٠	•			. vi i
PREFACE TO THE SECOND EDITION		•		٠	•	•			•	×	×	xxiii
PREFACE TO THE FIRST EDITION	•	•	•	•	•	×	•	•	•	•	•	xxvii
INTRODUCTION												1

CHAPTER I

HISTORICAL

Age of Philosophical Speculation	i .			•										5
Birth of an Hypothesis												÷.		5
Establishment of an Hypothesis		•	ġ.				•							6
Retarded Development. School	of	E	ne	rg	eti	cs	•		•		×.			6
Birth of a Theory						•								7
Later Development														7
Wave Mechanics		•			•	•			•		×		•	8

CHAPTER II

THE MECHANICAL PICTURE OF A PERFECT GAS

1.	The Mechanical Equivalent as	nd	tl	he	Ki	ine	eti	c]	Нy	po	oth	es	is					11
2.	The Numerical Value of RT.	•		÷							•	÷		•				14
3.	The Model of a Perfect Gas .	•		ų		ų.	÷	•				4	ł					15
4.	Molecular Motions	•		•			•			•	•					•		17
5.	The Kinetic Interpretation of	G	as	P	res	su	re							•				18
6.	Work of Compressing a Gas.	۰.						•			•				ų.			19
7.	Irreversible Compression									•			•					21
8.	Avogadro's Rule	÷	•	•			•	•			•		•	•		•		22
9.	Equipartition of Energy				•		ς.										•	24
10.	The Law of Partial Pressures			•			•			•	•		•					25
11.	Molecular Speeds.							×.					•					26
12.	Slow Diffusion, the First Para	do	x	of	th	e	Ki	ne	tic	1	The	201	y					29

CHAPTER III

THE MEAN FREE PATH-CLAUSIUS' DEDUCTIONS

13.	Concept of Free Path				•				÷	•			•	31
14.	Number of Collisions	•		•							•	÷	•	32
15.	The Quantities S and U .	÷						•						35
16.	Approximate Free Path.								2					36
	Elementary Deduction .							•						37
	-													

			PAGE
17.	Relative-velocity Correction.		. 37
18.	Clausius' Pressure-volume Relation.		. 39
19.	The Quantity b		. 41
20.	Number of Molecules Striking Unit Surface per Second	•	. 42
21.	The Distribution of Free Paths		. 43
22.	The Mobility of Gaseous Ions	•	. 46
23.	Experimental Knowledge of Molecular Free Paths		. 48
24.	Electron Free Paths		. 50
25.	Distribution of the Electron Free Paths		. 51

CHAPTER IV

THE DISTRIBUTION OF MOLECULAR VELOCITIES

26.	Introduction	59
27.	Boltzmann's Method.	60
28.	Velocity Exchanges in Elastic Impacts	64
29.	Continuation of the Boltzmann Derivation of the Distribution	
	Law	67
30.	Application of the H Function.	70
31.	Conclusion of Boltzmann's Method.	72
32.	The H Theorem and the Meaning of H	73
33.	Maxwell's Deduction of the Distribution of Velocities	74
34.	Evaluation of Constants A and α , of Boltzmann and Maxwell's	
	Deductions	79
35.	Plot of the Law and Various Averages	81
36.	Maxwell's Distribution Law and the Theorem of Equipartition	83
	Deduction of the Law of Equipartition for Translational Energies	
	in Gaseous Mixtures	86
	Extension of the Distribution Law to Include Potential Energy .	89
37.	Correction of Mean-free-path Equation of Clausius for Distribu-	
	tion of Velocities.	95
38.	The Mean Free Paths of Molecules in a Gas Composed of Mole-	
	cules of Different Kinds	97
39.	Mean Collision Frequency of Molecules of a Given Speed, Mean	
	Free Path of Such Molecules, Tait's Free Path	99
40A.	Number of Molecules Striking Unit Surface per Second	103
40B.	The Law of Evaporation of Molecules from a Liquid Surface	106
41.	Experimental Verification of the Maxwellian Distribution of	ur oxer
	Velocities	113
42.	The Average Velocities of Molecules or Electrons Emitted from	
	Hot Bodies	114
43.	The Rate of Escape of Molecules from a Hot Surface.	116
44.	The Distribution of Velocities among Electrons Liberated from	
	an Incandescent Source.	117
45.	The Verification of the Maxwell Distribution by the Doppler	
	Effect in Spectral Lines.	125
46.	The Direct Measurement of Molecular Velocities.	130

CHAPTER V

THE MORE ACCURATE EQUATION OF STATE, OR VAN DER WAALS' EQUATION

	P	AGE
47.	Introduction.	140
48.	Deviation from Boyle's Law and the Deduction of Van der Waals'	
	Equation	142
49.	Note on the Value of Van der Waals' b	148
50.	Deduction of Van der Waals' Equation from the Theorem of the	
	Virial	151
51.	Determination of a and b from Measurements on the Expan-	
	sion Coefficients of a Gas. Evaluation of the Absolute 0 of	
	Temperature	160
52A.	The Graphical Representation of the Equation of State and the	
	Evaluation of a and b from Critical Data	166
52B.	Nature of Atomic Force Fields	179
53.	The Joule-Thomson Effect Interpreted by Van der Waals' Equa-	
	tion	184
54.	Other Equations of State	191

CHAPTER VI

TRA	NSFER OF	MOME	NTUM,	TR.	ANSF	ER	OF	Εn	ERG	яγ, ΄	Γr.	INE	FE	R. C	F	M	ASS
T	IROUGH A	GAS.	THE F	VINI	ETIC	T	IEO	RY	OF '	THE	Co	DEF	FIC	IEI	NTE	8 C)F
	V	SCOSITY	, HEA	т (CONI	DUC	TIOI	N, 1	ND	DI	FU	SIC	N				
55. 56.	Introducti Irreversibl	on le Phen	omena	 	 		 	:	•••	••• •••	•	•		•••	•	•	201 202

I. Viscosity

57.	The Experimental Definition of Viscosity	204
58.	The Simple Kinetic Analysis of Viscosity	205
59.	Maxwell's Deduction of the Value of η	207
60.	Agreement between Elementary Theory and Observation for the	
	Coefficient of Viscosity	214
61.	Criticisms of the Simple Theories.	217
62.	Viscosity and Intermolecular Forces: Repulsive Force Fields	218
63.	Viscosity and Intermolecular Force Fields: Attractive Force	
	Fields. Attractive Forces.	221
64.	Viscosity and Intermolecular Forces: Simultaneous Attractive and	
	Repulsive Force Fields	226
65.	Measurement of Viscosity.	230

II. Heat Conduction

66.	Definition of Heat Conduction.	234
67.	The Simple Kinetic Theory of Heat Conduction	236
68.	Deduction of the Constant of Heat Conduction, Taking into	
	Account the Distribution of Free Paths and Velocities	238
69.	Correction of the Derivation of the Coefficient of Heat Conduc-	
	tivity and Comparison with Experiment.	240

CONTENTS

III. Diffusion

									P	AGE
70.	Definition of Diffusion			÷						252
71.	The Theory of Sclf-diffusion of Molecules.									256
72.	The Theory of Interdiffusion	•								260
73.	Criticism of Transfer Theory	•			•			,		264
74.	Measurement of Gaseous Diffusion		•		÷					268
75.	Experimental Results on Diffusion			•	÷	÷		•		272

CHAPTER VII

THE LAWS OF RAREFIED GASES AND SURFACE PHENOMENA

76.	Introduction.	278
77.	Deduction of Poisseuille's Law of Flow of Gases through a Capil-	
	lary Tube, and the Definition of the Coefficient of Slip	281
78.	Flow in Tubes for Rarefied Gases, Knudsen's Equation	290
79.	The Effusion of Gases and the Formation of Molecular Beams .	301
80.	Heat Conduction at Low Pressures.	310
81.	The Reflection of Molecules from Surfaces and Adsorption	325
	A. Statement of the Problem	325
	B. The Problem of Diffuse Reflection or Scattering.	331
	C. The Accommodation Coefficient	335
	D. The Adsorption of Molecules	337
82.	The Absolute Manometer.	348
83.	Thermal Transpiration	353
84.	Radiometric Forces in Gases	364

CHAPTER VIII

THE REALITY OF MOLECULAR MOTIONS, BROWNIAN MOVEMENTS

85.	Introduction.	389
86.	Brownian Movements.	390
87.	Brownian Movements and the Law of Atmospheres	392
88.	The Displacement of the Particles in a Given Time and the	
	Verification of the Brownian-movement Law of Einstein and	
	von Smoluchowski	399
89.	Accurate Verification of the Brownian-movement Relations for	
	Gases, and the Determination of the Avogadro number.	405
	A. Verification of the Brownian-movement Relations for Gases .	405
	B. Determination of the Avogadro Number	408

CHAPTER IX

SPECIFIC HEATS AND THE KINETIC THEORY

90.	Definition of Specific Heats and the Simple Experimental Facts .	426
91.	The Mechanical Properties of Molecules, Doctrine of Equiparti-	•
	tion, and of the Classical Values of the Specific Heats of Gases	431
	a. Mechanical Motions and Definition of Degrees of Freedom	431
	b. Molecules as Mechanical Systems	436
	c. The Theorem of Equipartition.	437
	d. Specific Heats on the Basis of Classical Mechanisms and the	
	Theorem of Equipartition.	440

P	AGE
92. A Brief Statement of the Quantum Theory and Its Elementary	
Application to the Problem of Specific Heats.	444
a. Statement of the Problem.	444
b. Introduction to the Quantum Theory.	446
c. Elementary Application of Quantum Principles to Specific-heat	
Problems	449
93. Atomic and Molecular Heats of Solids	455
94. Calculation of the Temperature Variation of Specific Heats from	
the Quantum Theory and the more Accurate Application of the	
Quantum Theory to the Specific Heats of Gases	461
94A. Calculation of the Temperature Variation of Specific Heats from	
the Quantum Theory.	462
94B. The More Accurate Application of Quantum Theory to the	
Specific Heats of Gases.	469

CHAPTER X

CONTRIBUTIONS OF THE KINETIC THEORY TO ELECTRICAL AND MAGNETIC PROPERTIES OF MOLECULES

I. The Dielectric Constant of Molecules

95.	Elementary Statement of the Problem	479
96.	Theory of the Variation of Dielectric Constant with Temperature	485
	a. The Deduction of the Clausius-Mosotti Law	485
	b. Temperature Variation of the Dielectric Constant	489
97.	Experimental Verification of the Debye Theory	494
	II. Application of the Kinetic Theory to the Magnetic Problem	
98.	Introduction.	504
99.	The Explanation of Diamagnetism.	505
100.	Paramagnetic Phenomena in Their Relation to the Kinetic	
	Theory	512
101.	A Summary of the Modern Picture of Atomic Structure in Relation	

CHAPTER XI

Application of the Kinetic Theory to the Conduction of Electricity in Gases

102.	Introduction	543
103.	The Kinetic-theory Analysis of Gaseous-ion Mobilities, Assuming	
	Ions That Are Charged Clusters of Molecules Exerting No	
	Forces on the Gas Molecules Due to Their Charge	547
104.	Test of the Simple Ion Theory and Further Formulation of the	
	Mobility Problem	555
105.	Deduction of an Expression for the Shortening of the Mean Free	
	Path Due to Attractive Forces. A Typical Small-ion Theory	560
106.	Other Equations for the Mobility of Ions and the Nature of the	
	Ion	564
107.	The Coefficient of Recombination of Ions	583

108.	The Mobilities of Electrons	600
109.	Attachment of Electrons to Neutral Molecules in Gases to Form	
	Ions	613
110.	The Photoelectric Current in the Presence of a Gas and the Theory	
	of Ionization by Electrons	623

Appendices

I.	Diameters of Molecules	÷	÷	2	÷	•	639
II.	Fundamental Physical Constants			5			644
III.	Molecular Velocities, Mean Free Paths and Diameters		÷			•	651
IV.	Exponential Functions	÷	•	e.	•		652
V.	Table of Values for e^{-x^2} , etc		э.		÷		653
VI.	Values of Definite Integrals	·	•		•	•	654
Aut	HOR INDEX	÷	•	•	•	•	655
Subj	ECT INDEX	·	•			•	663