目 次

17	しが	¥
10	レル	~

第1章	概 論 1
§1.1	半導体とは何か 1
§ 1.2	エネルギー帯モデル
§1.3	エネルギー帯モデルと電気伝導 7
§ 1. 4	水素原子様モデル11
§1.5	n 型と p 型半導体 ······14
第2章	格子欠陥とその制御17
§ 2.1	空格子点と割り込み原子17
§ 2. 2	転 位19
§ 2.3	欠陥の記述記号20
§ 2.4	欠陥の型をどうして決めるか21
§ 2.5	熱平衡における欠陥の濃度と質量作用則23
§ 2.6	原子価制御28
第3章	熱平衡における電子の分布34
§ 3.1	フェルミ準位34
§ 3.2	ケ陥準位の電子濃度37
§ 3.3	電子分布の公式38
第4章	電気伝導41
§ 4. 1	易動度 μn および μp ·······41
§ 4.2	ホール効果41
§ 4.3	熱起電力(ゼーベック効果)46
§ 4.4	伝導の解析50

§ 4. 5	シリコン, ゲルマニウム52
第5章	整流器とトランジスター58
§ 5.1	結晶整流器58
§ 5.2	金属と半導体の接触(熱平衡)60
§ 5.3	金属と半導体の接触(電流のあるとき)63
§ 5.4	p-n 接合 ······68
§ 5.5	少数キャリアの注入とその寿命74
§ 5.6	フィラメント・トランジスター76
§ 5.7	n-p-n トランジスター81
§ 5.8	光電池
第6章	エネルギー帯と結晶構造84
§ 6.1	周期的場の内の電子の定常状態. プリルアン区域84
§ 6 . 2	構造因子とブリルアン区域90
§ 6.3	実効質量 (質量テンソル)93
§ 6.4	光の吸収に対する選択則98
§ 6.5	金属, 半導体, 絶縁体とブリルアン区域100
§ 6.6	周期律表と化学結合104
§ 6.7	金属間化合物 109
§ 6.8	(III-b)・(V-b) 型金属間化合物111
§ 6.9	サイクロトロン共鳴吸収と光学遷移によるプリルアン
	帯の構造の決定115
§ 6. 10	遷移金属を含む半導体,磁性半導体・・・・・122
第7章	電気伝導と散乱機構128
§7.1	散乱とは128
§ 7.2	ボルツマン方程式129
§ 7.3	緩和時間 τ ······130
§7.4	電場, 磁場, 温度勾配のあるときのボルツマン方程式 …133

§7.5	等温ホール効果134
§7.6	易動度:格子の熱振動による散乱130
§ 7.7	低温の易動度:欠陥による散乱14
§ 7.8	磁気抵抗効果146
§7.9	熱起電力14 8
第8章	キャリアの寿命151
§ 8.1	寿命と減衰時定数157
§ 8.2	寿命の測定方法153
§ 8.3	表面再結合速度154
§ 8.4	体積再結合に対する種々の過程と寿命 tb に対する欠
	陥の影響156
第9章	電子の関与する光学的問題165
§ 9.1	光学的定数と伝導度の関係165
§ 9.2	分 散166
§ 9.3	不純物準位の光学的および熱的測定169
§ 9.4	熱刺戟電流 171
§ 9. 5	光伝導 (主に CdS, ZnS, ZnO)173
§ 9. 6	ゲルマニウムの光伝導180
§ 9.7	光伝導のスペクトルと表面の影響182
第 10 章	
§ 10. 1	仕事函数185
§ 10. 2	表面の堰層と表面準位187
§ 10.3	吸着と表面伝導189
§ 10. 4	縦電場効果および表面光電圧(表面準位の性質)191
第 11 章	種々の問題195
§11.1	サーミスター195

	- 2
§ 11.2	パリスター・・・・・195
§ 11.3	PbS 光伝導体 ······196
§ 11.4	有機半導体197
§ 11.5	励起子198
§ 11.6	不純物伝導199
§ 11.7	単結晶製作法201
§ 11. 8	エサキ・ダイオード204
記号表…	209
付 録…	211
参考文献	217

.....221