X CONTENTS

Volume II

PART III. GAUGE FIELDS IN SOLIDS

Chapter 1.	The Ideal Crystal	745
-	Displacement and strain	745
	Elastic energy	746
	Stress	754
	External body forces	758
	Elastic Green function	762
1.6.	Two-dimensional elasticity	768
	. The symmetry classes of the elastic matrix	772
1 7 0	Line-Like Defects in Crystals	777
12 N.C. 4	General remarks	777
	Dislocation lines and Burgers vector	782
	Disclinations and the Frank vector	7 87
	Interdependence of dislocations and disclinations	790
2.5.	Defect lines with infinitesimal discontinuities in continuous media	791
2.6.	Multivaluedness of the displacement field	792
2.7.	Smoothness properties of the displacement field and Weingarten's theorem	794
2.8	Integrability considerations	798
	Dislocation and disclination densities	801
	Mnemonic procedures for constructing defect densities	804
	Branching defect lines	807
	Defect density and incompatibility	808
	Defects in two dimensions	814
Chanter 3	Energetics of Dislocation Lines	818
10.70 page 10.	Strain and stress around dislocation lines	818
	Elastic interaction energy between two dislocation lines	825
		828
	Local Field Description of Interacting Dislocations	828
	Elastic partition function	830
	Helicity decomposition of a vector field	835
	Helicity decomposition of a tensor field	
	Helicity form of the magnetic energy Helicity form of the stress energy	840 842
	The two-dimensional case	850
4.0.	The two-dimensional case	630
Chapter 5.	Stress Energy of General Defect Distributions	854
5.1.	The symmetric stress gauge field	854
5.2.	Elastic partition function for a fixed general defect distribution	859
5.3.	Two-dimensional defects	862
Chapter 6.	Kinematic Properties of Dislocation Lines	865
6.1.	Glide	865
6.2.	Kinks	866

CONTENTS xi

6.3.	Climb	867
6.4.	General conservation motion	867
6.5.	Cross slip	868
6.6.	Dislocation sources	869
6.7.	Intersecting lines and jogs	871
	Basic energetic considerations of branching of dislocation lines	872
	Anchored branch points	874
Chapter 7.	Some General Properties of the Melting Process	875
7.1.	Historical notes	876
7.2.	The Lindemann criterion	878
7.3.	Review of Debye's theory of specific heat	882
7.4.	Quantum corrections to the Lindemann parameter	893
7.5.	Classical melting	900
7.6.	Lattice expansion up to the melting transition	902
7.7.	Softening of elastic constants	913
7.8.	Two-dimensional crystals	924
Appendix 7A	. Some lattice properties	930
	Frequency distributions	932
Chapter 8.	First Attempt at a Disordered Field Theory of Defect Melting	938
8.1.	Disorder fields of dislocation lines	939
8.2.	Fluctuation induced first-order transition	940
8.3.	Inclusion of stress and the Meissner effect	952
8.4.	Other possible mechanisms to make a transition first order	958
8.5.	Disorder fields for disclination lines	961
	Lattice Model of Defect Melting	971
	Setting up the model	971
	Defect representation of lattice model	976
	An XY type model of defect melting	999
Appendix 9A	A. Derivation of defect energy (9.109) from stress energy (9.90)	1008
Chapter 10.	Defect Gauge Fields	1013
	Gauge fixing	1014
	Physical content of integer-valued defect gauge invariance	1020
10.3.	Interaction energy between defect lines from the defect	
	gauge field	1025
10.4.	The defect model as an approximation to a first-principle N-body partition function	1029
Chapter 11.	Thermodynamics of the Melting Model	1034
	High temperature expansion	1034
11.2.	Low temperature expansion	1048
Appendix 11	A. Calculation of the Green function $v_4 = 1/(\overline{\nabla} \cdot \nabla)^2$	1057
	The Melting Transition in the Defect Model	1076
	Lowest order results for $D = 2$	1076
	Lowest order results for $D = 3$	1078

xii CONTENTS

12.4.	Stress and defect corrections in isotropic materials Anisotropic cubic materials Monte Carlo study of the melting model (Villain type)	1080 1083 1087
Chapter 13. 13.1. 13.2. 13.3. 13.4.	The Melting Model of the Cosine Type Inequality for free energy and the mean-field approximation Fluctuations around the mean-field solution One-loop correction to the mean-field energy High temperature expansion of the cosine melting model	1113 1114 1121 1127 1132
Chapter 14. 14.1. 14.2. 14.3. 14.4. 14.5. 14.6. 14.7. 14.8. 14.9. 14.10.	Pair correlations in the disordered phase The Two-Dimensional Kosterlitz-Thouless-Halperin-Nelson- Young Approach to Defect Melting Dissociation of dislocation pairs Renormalization group equations Triangular lattice Calculation of critical temperature The critical behavior of the coherence length Two-step melting Experimental evidences for and against a hexatic phase Comparison with molecular dynamics computer simulations Universal stiffness The Wigner electron lattice First order versus continuous KTHNY transitions Direct simulation of a gas of dislocations	1152 1162 1162 1167 1173 1179 1183 1189 1195 1198 1202 1208
Chapter 15. 15.1. 15.2.	Disorder Field Theory of Defect Melting Disorder lattice model for three-dimensional defect configurations Coupling the stress gauge field Disorder field theory of interacting defects	1218 1218 1220 1222
16.1. 16.2. 16.3. 16.4.	General Analysis of Defects on the Lattice Defect densities on a lattice Interdependence of dislocations and disclinations Degenerate defect configurations in linear elasticity Extending the defect sum to the lattice Two-dimensional considerations	1225 1225 1228 1231 1233 1238
17.1. 17.2. 17.3. 17.4.	Extended Theory of Elasticity Torque stresses General form of the elastic energy Canonical formalism for higher gradient theories Second-gradient elasticity Canonical formalism for second-gradient elasticity	1240 1240 1242 1245 1258 1262
18.1. 18.2.	Interaction Energy of Defects in Second-Gradient Elasticity Elastic energy of plastic deformations Canonical form of the stress partition function Lattice model of defect melting with second-gradient elasticity	1265 1265 1268 1269

CONTENTS xiii

18.4.	Calculation of the interaction energy of defects via stress-	
	gauge fields	1274
18.5.	Second-gradient interaction energy derived from defect	
	gauge fields	1282
18.6.	Second-gradient elasticity and the partition function of	
	two-dimensional defects	1286
	Two successive melting transitions at large rotational stiffness	1294
18.8.	Application of ℓ^2 criterion to Lennard-Jones and Wigner lattices	1305
Chapter 19.	Disorder Field Theory of Dislocation and Disclination Lines in	
	Three Dimensions	1319
19.1.	The partition function of general defect lines in three dimensions	1319
	Cosine form of the partition function	1321
	Disorder fields for dislocations and disclinations	1322
19.4.	Towards a quantum defect dynamics of moving defects in two	
	dimensions	1325
PART IV. D	DIFFERENTIAL GEOMETRY OF DEFECTS AND GRAVITY	
	VITH TORSION	
Chapter 1.	Introduction	1333
Chapter 2	Metric-Affine Spaces	1335
	Gravity and Geometry	1335
	Minkowski geometry formulated in general coordinates	1338
	Torsion tensor	1349
	Curvature tensor as a covariant curl of the connection	1350
	Torsion and curvature from defects	1356
2.5.	Differential geometric properties of metric-affine spaces with	
2.0.	curvature and torsion	1363
2.7	Circuit integrals in metric-affine spaces with curvature and torsion	
2.7.	Some examples of coordinate systems with defects	1374
	Identities for curvature and torsion tensors	1377
	Curvature from embedding	1380
		1382
2.11.	Geodesic coordinates in curved space	
Chapter 3.	Field Equations for Gravitation	1385
0-200-00	Invariant action	1385
3.2.	Energy-momentum tensor and spin density	1387
3.3.	Symmetric energy-momentum tensor of the gravitational field	
	and defect density	1395
Chanter 1	Spinning Particles	1397
	Local Lorentz invariance and non-holonomic coordinates	1397
	Field equations with gravitational spinning matter	1408
	-	
Chapter 5.	Covariant Conservation Laws	1413
5.1	Spin density	1414

xiv CONTENTS

5.2.	Energy-momentum density	1416
5.3.	Covariant derivation of conservation laws	1420
5.4.	Matter with integer spin	1421
5.5.	Relation between conservation laws and fundamental identities	1425
Chapter 6.	Gravitation of Spinning Matter as a Gauge Theory	1427
6.1.	Local Lorentz transformations	1427
6.2.	Local translations	1430
6.3.	Local four-fermion interaction due to torsion	1431
Chapter 7.	Geometric Theory of Stresses and Defects	1435
7.1.	Classical elasticity	1435
7.2.	Second gradient elasticity	1438
7.3.	Summing over defect configurations	1441
SUMMARY	AND OUTLOOK	1443

SUBJECT INDEX