目 次

1.	スピ	ン系のエキゾティックな秩序	
		超有効場理論とコヒーレント異常法 ――――――――――――――――――――――――――――――――――――	1
	1-1	はじめに 1	
	1-2	スピン系の秩序の発見の歴史 1	
	1-3	磁気相転移の統計力学的理論の発展の概要 3	
	1-4	コヒーレント異常法 6	
	1-5	超有効場理論 21	
	1-6	カイラルオーダーの超有効場理論 25	
	1-7	スピングラスの超有効場 CAM 理論 28	
	1-8	む す び 31	
2.	物理過	過程としてのカオス ―――――	— 35
	2-1	はじめに 35	
	2-2	ハミルトン系のカオス 37	
	2-3	ハミルトン系のカオスと物理現象 44	
	2-4	散逸の効果 53	
3.	固体表	●面再構成 ————————————————————————————————————	— 65
	3-1	はじめに 65	
		Si(111)表面の再構成 68	
		Si(111)7×7表面再配列の DAS 構造と電子状態 82	
		吸着構造と相転移 $n \times n$, $2 \times m$, $\sqrt{3} \times \sqrt{3}$ 構造 87	
		金属表面の再配列――整合・非整合再配列 92	
		おわりに 95	
	* #	- Managaria	
4.	内殼電	『子の光物性	- 103
	4-1	はじめに 103	6 662 1 4

	4-2	内殻光電子スペクトルにおける多体効果 104	
	4-3	希土類系の内殻光電子スペクトル 107	
	4-4	希土類系の内殻光吸収スペクトル 114	
	4-5	遷移金属化合物 121	
	4-6	おわりに 126	
5			191
J .	重い	電子——————————	131
	5-1	はじめに 131	
	5-2	金属中の電子 132	
		重い電子 132	
		実験事実 133	
	5-5	断熱的連続とフェルミ液体論 138	
		なぜ重くなるか 141	
		縮退したf軌道の周期的アンダーソン・ハミルトニアン 147	
	5-8	周期的アンダーソン模型に基づくフェルミ液体論 149	
	5-9	対称性の破れ 153	
	5-10	おわりに 156	
6.	= - +	A W TO A	- 159
U.	重子輔	新送現象 	100
	6-1	はじめに 159	
		MOSFET と整数量子ホール効果 159	
		半導体へテロ構造と分数量子ホール効果 171	
	6-4	微細加工技術とメゾスコピック系の量子輸送現象 176	
	6-5	おわりに 185	
7.	v= 4		100
	高温起	图伝導	- 189
	7-1	はじめに 189	
		超伝導現象 189	
	7-3	BCS 理論 192	
	7-4	非 BCS 機構の提案 202	
	7-5	酸化物高温超伝導の特徴 206	
	7-6	理想的な考察 224	
	7-7	まとめ 233	
索	引—		- 239
71	<i>3</i> 1		