PREFACE	v
CONTENTS	xvr
Chapter I: FUNDAMENTAL EQUATIONS OF DIFFRACTION OF WAVE	
FIELDS	1
1. Photons. Kirchhoff's theorem and Fraunhofer diffraction	2
2. X-rays. Maxwell's theory and Thomson's scattering formula	8
3. Schrödinger's theory and the Born-Mott approximation	14
4. Diffraction of neutrons by single atoms. Fermi-Born factor	19
5. Intensity function and Fourier space	21
6. Ewald's sphere of reflexion. Phase problem and Q -function	23
7. Diffraction microscopy and Abbe's theory of lenses	27
8. Some remarks about the dynamical interference theory, Doppler and Compton	
effects, absorption factors and anomalous dispersion	29
9. Dynamical interference theory of Ewald, v. Laue and Lamla	34

Chapter II: CONVOLUTION OPERATIONS	40
1. General properties of convolution products	41
2. General properties of convolution square	46
3. Folding machine and optical illustrations	47
4. Calculation of one-dimensional convolution products	60
4.1 Dirichlet's step functions	60
4.2 The function $g(t) = \sin 2\pi v t / \pi t$	61
4.3 Gaussian function	62
4.4 Convolution product of a Gaussian function with Dirichlet's step function	64
5. Calculation of multidimensional convolution products	65
5.1 Convolution square of a circle	65
5.2 Convolution square of a sphere	65
5.3 Convolution square of a rectangular parallelepiped	66
5.4 Convolution product of two Gaussian functions	66
5.5 Convolution product of a Gaussian function with a shell function	67
5.6 Convolution product of orthogonal straight line functions	68
5.7 Three-dimensional convolution product of a Gaussian function and a	
spherically symmetrical function	69
6. Physical significance of convolution operations	70
6.1 The law of propagation of errors	70
6.2 The precision of measurement. \ldots \ldots \ldots \ldots \ldots \ldots	72
6.3 The collimation error or instrumental broadening	73
6.4 Superposition of tolerances. The "window"	74
6.5 Convolution square and convolution square root	75
Chapter III: FOURIER TRANSFORMATION	76
1. The analysis of a temporal phenomenon with the help of its frequency spectrum	76
2. Definition of multidimensional Fourier transformation	79
3. The affine transformation. The normalised p - and h -space \ldots \ldots	82

XVI

 \tilde{s}

4.	General properties of Fourier transforms	. 86
	4.1 Fourier's integral theorem	. 86
	4.2 Shift theorem of Fourier transforms	. 87
	4.3 Convolution theorem of Fourier transforms	. 87
	4.4 Some other integral properties'	. 88
	4.5 Symmetry properties of Fourier transforms	. 89
5.	Fourier transformation and convolution square	. 91
6.	Fourier transform of a spherically symmetrical function	. 91
7.	Fourier transform of cylindro-symmetrical functions. The transform of a heli	x 92
8.	Shape function and shape amplitude	. 96
	8.1 Dirichlet's step function	. 96
	8.2 The shape amplitude of a rectangle	. 98
	8.3 The shape amplitude of a parallellepiped	. 99
	8.4 The shape amplitude of a circle	. 100
	8.5 The shape amplitude of a sphere	. 102
	8.6 The shape amplitude of an ellipsoid of revolution	. 102
9.	Abbe transformation	. 103
	9.1 The shape amplitude of a tetrahedron	. 105
	9.2 The shape amplitude of an octahedron	. 108
10.	The integral width of the shape factor	. 109
11.	The generalised Guinier-approximation and the shape tensor	. 112
01	TT CONTROL UTION DOI VNOMIALC	190
Chapt	er IV: CONVOLUTION POLYNOMIALS	. 120
1.	Multiple convolution products and convolution square roots	. 120
	1.1 Multiple folding operations	. 120
	1.2 Convolution square root \ldots	. 121
2.	The characteristic convolution square root.	. 122
3.	The paracrystalline convolution polynomial for coordination statistics .	. 131
4.	The ideal paracrystalline convolution polynomial	. 138
5.	The steps of folding operations. The elementary cell	. 140
6.	Experimental verification of the relation between lattice statistics and coor	r-
	dination statistics	. 143
7.	The convolution quotient. Southwell's method of relaxation	. 147
<u></u>	THE THE AMENTALS OF FUNCTION ALCEDDA	159
Chapt	ter v: FUNDAMENTALS OF FUNCTION ALGEBRA	. 154
1.	The mathematical necessity of a function algebra	. 152
2.	Physical necessity of function algebra	. 153
3.	Definition of a function complex. Laurent Schwartz's theory	. 100
4.	The function complex of point functions	. 100
5.	Fourier transform of function complexes.	. 100
6. -	Integro-differential operator	. 171
7.	Jordan's theorem. Integration through the pole	. 170
8.	Fourier transform of one-dimensional functions.	103
9.	Fourier transforms of some important functions	. 100
10.	The universal validity of the integral theorem of Fourier transformation for	a 195
	$\mathbf{function \ complex} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $. 100
Chant	THE VI FUNDAMENTALS OF DIFFRACTION MICROSCOPY	. 198
Chapt	OL AL TOMDREIGNESS OF DIFFICACITOR MICROSCOLL	100
1.	Observable properties of the intensity function and of the Q-function .	. 190
2.	Termination effect and resolving power	. 202 909
3.	VISIDIE and Invisible gnosts	. 203 909
4.	The expectation value of Q- and intensity function. Rayleign-scattering	. 208
5.	Frozen structures, ξ -average and time-average	. 411

Chapter VII: GENERAL BASIC PROPERTIES OF A STRUCTURE	216
1. The Q-function of a point structure. The distance statistics $z(x)$ of a point	
structure	216
2. The intensity function of a point structure. The separation of the shape factor	
from the distance statistics factor	219
3. Theorem of Ornstein-Zernike. Small angle scattering and clusters	220
4. General properties of a particle structure. The interaction zone	225
5. Lattices and partial correlations	229
6. Superlattices	234
7. Atom factor, brick factor and lattice factor. Clusters	236
8. Lattice distortions of the first and second kind. Dislocation factor	239
9. The general intensity formulae. Debye's volume scattering. Cooperative forces	246
Chapter VIII: THE SINGLE CRYSTAL	252
1. The function complex of the crystalline lattice factor. Laue conditions	252
2. Miller indices and Bragg law	258
3. Structure factor. Laue's method of determining the shape and size of a	
crystallite. Practical crystallography	260
4. Fourier and Patterson synthesis of crystals. Sharpening of the map	264
5. Ideal mixed crystal	270
6. Thermal distortions of the lattice. The Debye-Waller temperature factor.	271
7. The Lorentz factors	278
7.1 Stationary crystal in a polychromatic primary beam. Laue pattern	279
7.2 Oscillation diagrams with monochromatic primary radiation (Schiebold	
and Polanyi)	280
7.3 The oscillating method of Bragg and Darwin	282
7.4 Powder diagrams of crystals (Debye-Scherrer pattern)	284
8. Extra Laue spots. Laval's theory. Doppler effect. Laue's temperature factors	286
9. Line profiles and line breadths. Background analysis	291
9.1 Line broadening of strained crystallites	294
9.2 Line profiles, antiferromagnetic crystals and thermal vibrations	298
9.3 Background scattering	299
Chapter IX: THE SINGLE PARACRYSTAL	302
1. Statistical correlations and partial statistics	302
2. The ideal paracrystalline lattice factor. Generalised Laue conditions	305
3. The paracrystalline lattice factor. Correlation factors	310
4. Coordination statistics, lattice cell and valence bonds	315
5. Discussion of K-factor	322
6. Interaction zone and composite reflexions	331
7. Crystalline and diffuse reflexions. Generalised Bragg law	337
8. Degenerate cases of crystals, liquids and gases	342
9. Small angle scattering of a single paracrystal. The cluster term	346
10. Crystals with statistical stacking faults	350
Chapter X: COMPTON SCATTERING. THE SINGLE ATOM AND ELECTRON	354
1. Einstein's frequency relation and de Broglie's wavelength relation	354
2. Compton's theory of particle scattering	355
3. Semi-wavemechanical treatment. The recoil factor	358
4. The conventional and generalised atom factor. Raman's fluctuation term.	- 44-7574, BY 52752977
The electron factor	363
5. The single atom. The correlation term	367

8

6. 7. 8. 9. 10. 11. Chapt 1.	The conventional quantum mechanical calculation of Wentzel The cross-section of atoms and electrons	369 372 374 379 381 382 382 387
2.	Polydispersity and the gamma function	391
3.	The component of particle scattering	396
4.	Analysis of the particle factors of polydispersed systems	398
5.	Analysis of the lattice factor of an amorphous lattice	399
6.	Continuous small angle scattering and relative polydispersity	403
Chapt	ter XII: BUNDLES OF ULTRAFIBROUS PLANE PARALLEL SHEETS	408
1.	Micellar and fibrillar systems.	408
2.	One-dimensional problem. Expectation value for a fixed number N of particles 2.1 General properties of the expression for the intensity function and its	410
	relation with the Zernike-Prins theory	413
	2.2 Small angle scattering \ldots	419
	2.3 Integral intensities \ldots	421
3.	Expectation value for a given shape function	423
4.	Laminar factor and ultrafibrillarity	428
5.	The intensity function of plane parallel ultrafibrillar polydispersed laminar	
1527	bundles. \ldots	431
6.	Babinet component I_B of the intensity function $\ldots \ldots \ldots \ldots \ldots$	435
7.	The degenerate cases	438
8.	Two new Lorentz factors	44 0
	8.1. Bundles with fibrous texture and with lamellae having a large width B_k 8.2. Totally disorientated bundles with lamellae having a large width B_k	441
	and length L_k	442
Chapt	CONVOLUTION INTEGRALS	444
1.	Bravais lattices and partial Fourier lattices	445
2.	The characteristic matrix of the Patterson function and the structure ampli- tude	448
3.	The convolution square root of a sharpened Patterson function of the type of eq. (23)	451
	3.1 The general case. Lattice of the type Cu. Al Mn	452
	3.2 Lattice of the type NaCl.	453
	3.3 Lattice of the Al type	455
	3.4 Lattice of the type ZnS	456
	3.5 Lattice of the diamond type	457
	3.6 Lattice of the type CaF.	458
4.	Folding of atoms at the lattice points and partial structure factors	460
5.	The superposition effect. Rallving action	463
6.	The iterated Gaussian analysis of atom form amplitudes. The number of co-	466
7.	Graphical Gaussian analysis, termination effect and errors of extrapolation	472
	I THE	

8. Correction term and total error	476
9. Comparison with Hartree's atom model and Debye's temperature factor .	481
10. The real structure of diamond	488
11. The odd Patterson function of Pepinsky. Asymmetric structures and resonance	
effects at absorption edges (anomalous dispersion)	500
12. Necessity of refinements in practical crystallography	513
Chapter XIV: FINE STRUCTURE OF CRYSTALLINE REFLEXIONS DIRECT	
PHASE DETERMINATION	514
1 Comparation of the O formation	514
1. Separation of the Q_0 -function.	514
2. Shift of the reflexions \ldots	517
3. Calculation of the gradient of the structure factor	521
4. Shift of reflexions of pseudo-homometric structures	524
5. Direct phase determination by heavy atom technique	527
Chapter XV: THE PROBLEM OF UNIQUENESS	528
1. Bounded structures and analytical transforms	528
2. Necessary conditions for a unique solution	529
3. Homometric structures	533
4. Pseudo-homometric structures	537
5. Babinet's theorem	540
6. Manifold of solutions and precision of experiments	548

Chapt	ter XVI: THE CONVENTIONAL THEORIES OF FLUIDS	553
1.	Critical remarks. The primitive liquid	553
2.	The interference theory of gases by Debye	559
3.	Analysis of the intensity function of the conventional theory	561
4.	The interference theory of liquids by Zernike and Prins	567
5.	The inverse integral of Warren and Jagodzinski	570
6.	Theories of small angle scattering by Debye-Bueche, Fournet and Porod.	576
7.	Termination effect.	581
8.	The compressibility integral of Ornstein. Critical opalescence	583
Chap	ter XVII: ANALYSIS OF SMALL ANGLE SCATTERING	587
1.	Continuous and discontinuous small angle scattering	587
2.	Basic properties of small angle scattering	588
3.	Continuous small angle scattering of practically monodispersed systems	594
	3.1 Globular particles	595
	3.2 Non-globular particles	595
4.	Continuous small angle scattering of polydispersed systems	598
5.	The inner surface in colloidal systems. The surface of a "particle"	600
	5.1 Method of Elkin, Shull and Roess	600
	5.2 Method of Porod [1951, 1952]	603
6.	Elimination of the errors of collimation	605
7.	The methods of analysis of practically continuous small angle scattering .	610
	7.1 The $\ln I - \mathbf{u}^2$ diagram (GUINIER [1939], WARREN and BISCOE [1942] and	
	HOSEMANN [1951])	611
	7.2 The $\ln I - u$ diagram (JOERCHEL [1956])	611
	7.3 The $\ln I - \ln (u^2 - \sigma^2)$ diagram (SHULL and ROESS [1947])	613
	7.4 The u ² I-u diagram (HOSEMANN [1939], JOERCHEL [1957])	614
	7.5 Interference correction and density of packing ([OERCHEL [1957])	617

8. Discontinuous small angle scattering	618
9. Multiple small angle scattering	618
10. Some remarks about secondary extinction	625
Chapter XVIII: EXPERIMENTAL RESULTS	627
1. Analysis of the Fraunhofer diffraction of two-dimensional polydispersed	
globular aggregates	627
2. Analysis of continuous small angle scattering of X-rays	632
3. Analysis of discontinuous small angle scattering	645
4. Fraunhofer diffraction of two-dimensional lattices and superlattices	654
5. Analysis of the intensity function of the one-dimensional paracrystal	656
6. Calculation of the degree of crystallinity	664
7. Highly monochromatic X-ray beams	666
8. Real and ideal single crystals	667
Appendix: SCHWARTZ'S THEORY OF DISTRIBUTIONS AND THE THEORY	
OF PHYSICALLY OBSERVABLE FUNCTIONS by P. K. GHOSH	674
1 Introduction	674
2 Ceneralisation of the notion of a function	675
2. Differentiation of distributions	678
A Decordo functions "Dartie finie" of Hadamard	679
5 Multiplication of distributions	679
	680
7 Convolution products	680
7. Convolution products	680
6. Integration of distributions	681
9. Fourier temperature	681
10. Fourier transforms	689
11. Generalised functions	685
12. Physically observable functions	000
	000
REFERENCES	688
CLOSSARY OF SYMBOLS (MATHEMATICAL OPERATIONS)	701
GLOSSART OF STMDOLS (MATHEMATICALE OF ERATIONS)	
AUTHOR INDEX	712
SUBJECT INDEX	716

.