CONTENTS

Preface to the English edition	ix
Preface to the Russian edition	xi
Introduction	
1. The Subject of Stellar Dynamics	1
2. A Brief Outline of the Historical Development of Stellar Dynamics	3
3. The Fundamentals of the Synthetic Method in Stellar Dynamics	5
4. The Practical Significance of Stellar Dynamics	11
I. THE FUNDAMENTAL CONCEPTS OF STELLAR STATISTICS	
1. Some Properties of Univariate Distribution Functions	13
2. Multivariate Distribution Functions	19
3. Statistical Properties of Stars	23
II. THE KINEMATICS OF STELLAR SYSTEMS	
1. The Macroscopic Volume Element and the Star Density Function	33
2. The Phase Density Function	34
3. The Velocity Distribution Function	35
4. Centroids	37
5. The Local Motion of the Sun in the Galaxy	40
6. The Velocity Ellipsoid and its Determination from Observations	42
7. Results of Velocity Ellipsoid Determinations and some Inferences therefrom	50
8. The Determination of the Actual Form of the Ellipsoidal Velocity Function	53
 The Differential Field of Centroid Velocities. Helmholtz' Theorem for Stellar Systems 	5 9
10. Determination of the Kinematic Parameters of the Differential Field of Centroid Velocities from the Observed Velocities of Stars	64
III. THE ELEMENTARY THEORY OF GALACTIC ROTATION	
1. General Formulae of Galactic Rotation	67
2. The Local Field of Centroid Velocities. Generalisation of Oort's Formulae	70
2 Oort's Formulae for an Arbitrary Plane-parallel Motion	74

vi CONTENTS

4. The Physical Basis of the Theory of Galactic Rotation. The Nature of the K Term	75
5. Determination of the Parameters of Galactic Rotation from Observation	78
6. Determination of the Period of Rotation and Angular Velocity of the Galaxy	80
7. Determination of the Mass of the Galaxy	82
8. The Velocity of Escape and the Phenomenon of the High-velocity Stars	85
9. Kinematics of Centroids in the Metagalaxy	91
10. The Problem of Setting up a Fundamental Coordinate System	96
IV. Irregular Forces in Stellar Systems	
1. The Fundamental Quantities which Characterise the State of a Stellar System	99
2. Star Encounters. Regular and Irregular Forces	103
3. The Effect of Irregular Forces: Individual Encounters	105
4. The Effect of Irregular Forces: the Cumulative Effect	110
5. Various Types of Equilibrium of Stellar Systems. The Quasi-steady State	114
6. The Relaxation Time and the Disintegration Half-life	116
7. The Fundamental Paradox in the Classical Dynamics of Stellar Systems	119
8. The Interaction of Stars with Dust Clouds	122
9. The Invariance of Maxwell's and Schwarzschild's Velocity Distribution Laws in Stellar Encounters	130
V. STATISTICAL STELLAR DYNAMICS NEGLECTING ENCOUNTERS	
1. The Fundamental Differential Equation of Stellar Dynamics	137
2. The Boltzmann Equation in Curvilinear Coordinates	140
3. Jeans' Theorem and Liouville's Theorem	143
4. The Integrals of the Motion in Some Typical Cases	145
5. One-valued and Many-valued Integrals. The Ergodic Hypothesis in Stellar	
Dynamics	147
6. Jeans' Problem. The Symmetry of the Distribution in Velocity Space	153
7. The Inverse Jeans' Problem	156
8. The Importance of Using One-valued Integrals of the Motion	164
9. Quasi-integrals of the Motion. Oort's Quasi-integral	168
10. The Problem of the Third Integral for Systems with Rotational Symmetry	172
11. The Potential Energy of Stellar Systems	178
12. The Virial Theorem. Poincaré's Theorem on the Limiting Angular Velocity of Rotation	181
VI. REGULAR ORBITS OF STARS	
1. Circular and Almost Circular Orbits in a Stellar System with Rotational Symmetry and a Plane of Symmetry	185

CONTENTS	vii
2. Determination of the Potential of the Galaxy	191
3. Some Properties of Regular Galactic Orbits	193
4. The Distribution of Mass in the Galaxy and Some Related Problems	197
5. Some Properties of Star Orbits in Spherical Systems	203
VII. THE PROBLEM OF LOCAL DYNAMICS	
1. Statement of the Problem	208
2. The Local Cluster and its Motion in the Galaxy	210
3. Observed Anomalies of Stellar Motions in the Neighbourhood of the Sun	212
4. The Linearised Equations of Motion in Lindblad's System of Rotating Coordinates	216
5. Conditions for the Dynamical Stability of Stellar Condensations	220
6. The Quasi-precession of the Velocity Ellipsoid	223
7. The Quasi-tidal Effect on the Velocity Ellipsoid	225
8. The Application of the Theory to the Observational Results	227
9. The Combined Quasi-precession and Quasi-tidal Effects	230
10. The K Effect as a Result of the Dissipation of the Local Cluster	234
11. The Dynamics of the Local Cluster	237
VIII. DYNAMICS OF CENTROIDS	
1. Macroscopic Motions in Stellar Systems	240
2. Some Properties of the Kinematics of Centroids	242
3. Equations of Motion of Centroids in Rectangular Coordinates	244
4. The Dynamical Significance of the Velocity Moment Tensor	248
5. Equations of Motion of Centroids in Cylindrical and Spherical Coordinates	250
6. The Hydrodynamical Equations for a Rotationally Symmetrical System in a Steady State	254
7. The Explanation of the Asymmetry of Stellar Motions in the Galaxy	256
IX. DYNAMICS OF SPHERICAL STELLAR SYSTEMS	
1. The Basic Equations for Spherical Systems	260
2. The Use of the Theory of Polytropic Spheres	264
3. The Most Probable Phase Distribution	269
4. The Truncation of the Phase Distribution. Determination of the Star Density	274
5. Discussion of the Expression Obtained for the Phase Density	276
6. Determination of the Parameter h^2 of the Phase Distribution	279
7. The Distribution of Star Orbits. Lindblad and Bottlinger Diagrams	281
8. Spherical Systems with an Inhomogeneous Star Population	291

viii CONTENTS

INDEXES

X. DYNAMICS OF ROTATING STELL	AR SYSTEMS
1 The Masses and Rotation of Vario	ous Types of Galaxy

1. The Masses and Rotation of Various Types of Galaxy	293
2. The Boundaries of the Galaxies	296
3. The Method of Additive Parameters	299
4. The Most Probable Phase Distribution for the Simplest Types of Galaxy	302
5. The Phase Distribution for Dynamically Determinate Galaxies	304
6. Equilibrium Figures of D Galaxies	308
7. The Formation of Sharp Edges in Elliptical Galaxies	314
8. The Formation of Central Nuclei and Ring Structure in Galaxies	316
9. The Existence of Needle-shaped and Pear-shaped Galaxies	319
10. Kapteyn-Lindblad Systems	322
11. The Fourth Additive Parameter for KL Systems	328
12. The Most Probable Phase Distribution for KL Systems	333
13. The Galaxy and Similar Spirals as Kapteyn-Lindblad Systems	339
14. Some Conclusions Regarding the Processes of Evolution of Stellar Systems	343
References	347

355