## Table of Contents

| Pref  | ace                                                                     | ix |
|-------|-------------------------------------------------------------------------|----|
| Prefa | ace to the English Edition                                              | хi |
| Chap  | oter 1 / Introduction                                                   | 1  |
| Chap  | oter 2 / A Spherically Symmetric Black Hole                             | 5  |
| 2.1.  | Spherically Symmetric Gravitational Field                               | 5  |
| 2.2.  | Spherically Symmetric Gravitational Field in Vacuum                     | 6  |
| 2.3.  | Radial Motion of Test Particles in the Schwarzschild Field              | 9  |
| 2.4.  | Spacetime Within the Schwarzschild Sphere                               | 12 |
| 2.5.  | Contracting and Expanding T Regions                                     | 17 |
| 2.6.  | Formation of a Black Hole in a Gravitational Collapse. White Holes      | 19 |
| 2.7.  | Eternal Black and White Holes                                           | 22 |
| 2.8.  | Celestial Mechanics in the Gravitational Field of the Black Hole        | 28 |
| 2.9.  | Gravitational Capture                                                   | 33 |
| 2.10. | The Motion of Particles Corrected for Gravitational Radiation           | 34 |
| Chap  | oter 3 / Wave Fields Around a Spherical Black Hole                      | 36 |
| 3.1.  | Weak Fields in the Schwarzschild Metric                                 | 36 |
| 3.2.  |                                                                         | 38 |
| 3.3.  | Gravitational Radiation of a Test Particle in the Field of a Black Hole | 41 |
| 3.4.  | Power-Law 'Tails' of the Gravitational Radiation                        | 45 |
| 3.5.  | Cross-Section of Wave Scattering by a Black Hole                        | 47 |
| Chaj  | pter 4 / Rotating Black Hole                                            | 51 |
| 4.1.  | Formation of a Rotating Black Hole                                      | 51 |
| 4.2.  |                                                                         | 52 |
| 4.3.  | AT 11                                                                   |    |
|       | Nonrotating Observers                                                   | 54 |
| 4.4.  | Spacetime of a Rotating Black Hole                                      | 60 |
| 4.5.  | *                                                                       | 62 |
| 4.6.  |                                                                         | 66 |
| 4.7.  | Wave Fields Around a Rotating Black Hole                                | 68 |
| 4 8   | Charged Rotating Black Hole                                             | 79 |

| Chai | oter 5 / General Properties of Black Holes                                                | 82  |
|------|-------------------------------------------------------------------------------------------|-----|
| 5.1. | Asymptotically Flat Spaces. Penrose Diagrams                                              | 82  |
| 5.2. | Event Horizon. Penrose Theorem                                                            | 89  |
|      |                                                                                           |     |
| 5.3. | The Ehlers–Sachs Theorem. Focusing of Light Rays by Gravitational Field                   | 93  |
| 5.4. | Hawking's Theorem. Cosmic Censorship Conjecture                                           | 98  |
| 5.5. | Trapped Surfaces, Apparent Horizons, <i>R</i> - and <i>T</i> -Regions                     | 100 |
| 5.6. | Theorems on Singularities Inside Black Holes                                              | 107 |
| Chap | oter 6 / Stationary Black Holes                                                           | 110 |
| 6.1. | 'Black Holes Have No Hair'                                                                | 110 |
| 6.2. | General Properties of Stationary Black Holes                                              | 112 |
| 6.3. | Uniqueness Theorem for Static Black Holes                                                 | 118 |
| 6.4. | Uniqueness Theorem for Stationary Axially Symmetric Black Holes                           | 121 |
| 6.5. | Analytic Continuation of the Kerr–Newman Metric Inside the Event Horizon                  | 128 |
| 6.6. | Generalization of the Uniqueness Theorem to the Case of                                   | 120 |
| 0.0. | Nonelectromagnetic Fields                                                                 | 131 |
| -    | oter 7 / Black-Hole Electrodynamics                                                       | 135 |
| 7.1. | 1                                                                                         | 136 |
| 7.2. | Stationary Electrodynamics in the Case of Axial Symmetry. Force-<br>Free Fields           | 138 |
| 7.3. | Boundary Conditions at the Event Horizon. Membrane Interpretation and 'Stretched' Horizon | 143 |
| 7.4. | Electromagnetic Fields in Vacuum in the Neighborhood of a Black<br>Hole                   | 148 |
| 7.5. | Magnetosphere of a Black Hole                                                             | 151 |
| Char | oter 8 / Physical Effects in the Gravitational Field of a Black Hole                      | 156 |
| 8.1. | Extraction of Energy from a Black Hole. Superradiance                                     | 156 |
| 8.2. | Global Structure of the Field of a Test Charge in the Spacetime of an Eternal Black Hole  | 162 |
| 8.3. | The Shift in the Self-Energy of a Charged Particle in the Field of a                      |     |
| 0.5. | Black Hole                                                                                | 168 |
| 8.4. | Mutual Transformation of Electromagnetic and Gravitational Waves                          |     |
|      | in the Field of a Charged Black Hole                                                      | 171 |
| 8.5. | Black Hole in an External Field. Interaction Between Black Holes                          | 176 |
| Char | oter 9 / Quantum Effects in Black Holes. Particles Production                             | 190 |
| 9.1. | Role Played by Quantum Effects in Black-Hole Physics                                      | 190 |
| 9.2. | Quantum Creation of Particles in an External Field. General Theory                        | 196 |
| 9.3. | Averaging over 'Nonobservable' States. Density Matrix                                     | 202 |
| 9.4. | Density Matrix and Generating Functional for Quantum Effects in                           |     |
|      | Black Holes                                                                               | 205 |

References

Subject Index

323

339