Contents | | PREFACE | | | | |----|---|----|--|--| | I | INTRODUCTION AND BRIEF SURVEY OF OBSERVATIONAL DATA | | | | | | 1.1 Introduction 1.2 Observational Data 1.3 Classification of Data 1.4 Stellar Populations 1.5 Important Phases in the Development of Theories of Stellar Structure | | | | | II | QUANTUM STATISTICS AND DEGENERATE MATTER | 19 | | | | | 2.1 Introduction 2.2 Entropy 2.3 Phase Volume Available to Each Particle of an Assembly 2.4 Mode of Distribution of Particles in the Cells in Phase Space 2.5 Equilibrium States 2.6 Classical Statistics 2.7 Non-relativistic Case of <i>B-E</i> and <i>F-D</i> Statistics | | | | | | 2.8 Relativistic F-D Statistics 2.9 Approximate Expressions for N and p for F-D Statistics 2.10 Physical Concept of Degeneracy 2.11 Statistics for Photons and Planck's Law of Black-body Radiation | | | | | Ш | MEAN MOLECULAR WEIGHT FOR A PERFECT GAS | 42 | | | | | 3.1 The Perfect Gas Equation 3.2 Mean Molecular Weight of Fully Ionized Gases 3.3 Strömgren's Method of Calculating μ for Incomplete Ionization 3.4 Recent Work 3.5 Ionization of Stellar Hydrogen and Helium | | | | | IV | RADIATION AND RADIATIVE EQUILIBRIUM | 53 | | | | | 4.1 Elementary Ideas 4.2 Definition of Terms 4.3 Laws to be Used 4.4 Local Thermodynamic Equilibrium 4.5 The Equation of Radiative Transfer 4.6 The Solution of the Equation of Transfer for Stellar Interiors 4.7 Integrated Flux 4.8 Rosseland's Correction to κ_ν for Induced Emission 4.9 The Equation of Radiative Equilibrium 4.10 Equations for Spherical Symmetrical Distribution 4.11 Relation between Gas Pressure and Radiation Pressure | | | | ## **CONTENTS** | V | | ERMODYNAMICS OF A PERFECT GAS ND RADIATION | 74 | |-----|---|--|-----| | | 5.2
5.3
5.3
5.4
5.5
5.6 | Specific Heat of a Perfect Gas Polytropic Changes (i) Specific Heats of a System Consisting of a Gas and Radiation (ii) Adiabatic Change Specific Heat for the Ionized Material Stability of Radiative Temperature Gradient Convective Flux Parametric Equations for a System Containing a Monatomic Perfect Gas and Radiation in Convective Equilibrium | | | VI | THE STELLAR OPACITY FOR A PERFECT GAS | | 91 | | | 6.2
6.3
6.4
6.5 | Methods of Calculating Stellar Opacity Stellar Absorption of Radiation B-F and F-F Transition Electron Scattering The Opacity Coefficient for Integrated Radiation Modified Kramers' Law | | | VII | | ERMODYNAMICS AND OPACITY OF EGENERATE MATTER | 108 | | | 7.2 | Specific Heats Opacity of Dense Matter Radiative Opacity | | | III | ENI | ERGY OF STARS | 122 | | | 8.2
8.3
8.4
8.5
8.6
8.7
8.8 | Thermonuclear Reactions Nuclear Structure Potential Barrier The Probability of Non-resonant Thermonuclear Reactions Mean Life of a Nucleus Three Important Nuclear Reactions Carbon–Nitrogen Cycle Three-alpha Reaction Some Other Important Reactions Gravitational Contraction as a Source of Energy | | | IX | | NDAMENTAL EQUATIONS OF STELLAR RUCTURE | 147 | | | 9.2
9.3
9.4
9.5
9.6 | The Equation of Hydrostatic Equilibrium Integral Theorems Uniform Contraction. Lane's Law Fundamental Equations of Stellar Structure Boundary Conditions The Vogt-Russell Theorem Strömgren's Theorem Transformation of the Equations to Dimensionless Forms | | | X | COMPLETELY CONVECTIVE AND RADIATIVE MODELS WITH UNIFORM CHEMICAL COMPOSITION | | |---------------|---|-------------| | | 10.1 Homogeneous Models 10.2 Polytropic Models without Radiation Pressure 10.3 The Homology Theorem and the Homology Invariant Functions 10.4 The Milne and the Fowler Solutions of the Lane-Emden (L-E) Equation | 170 | | | 10.5 Isothermal Gas Sphere 10.6 Convective Stellar Model with Radiation Pressure 10.7 Radiative Model 10.8 Model for Sub-dwarfs of Population II and the Mass-Luminosity Relation | | | | 10.9 Integration of the Equations of Structure10.10 Properties of the Model | | | XI | HOMOGENEOUS COMPOSITE MODELS | 201 | | | 11.1 Homogeneous Composite Models 11.2 The Homogeneous Composite Models with Radiative Cores and Convective Envelopes | | | | 11.3 The Homogeneous Models consisting of Convective Cores and Radiative Envelopes. Models for Initial Upper Main Sequence Stars | | | XII | WHITE DWARF STARS | 227 | | | 12.1 Characteristics of White Dwarfs 12.2 Completely Degenerate Configurations 12.3 The Maximum Mass for the Completely Degenerate Configuration with Radiation Pressure | | | | 12.4 The Composite Configurations 12.5 Partially Degenerate Configurations 12.6 Energy Generation in White Dwarfs 12.7 The Elementary Theory of Pressure Ionization and the Maximum Radius for a Cold Body | | | XIII | EVOLUTION OF STARS | 254 | | | 13.1 Introduction 13.2 Contractional Phase 13.3 Some General Remarks about the Evolution of Stars from the
Main Sequence Stage | | | | 13.4 General Survey of the Development of the Theory of Evolution 13.5 The Evolution of the Sun 13.6 The Early Evolution of the Upper Main Sequence Stars 13.7 The Later Phases of Evolution | | | ΧΙV | | 298 | | 2 31 V | 14.1 Cosmic Abundance Curve 14.2 Gamow's Theory 14.3 Synthesis of Elements in Stars 14.4 Nuclear Reactions and Synthesis of Heavy Elements 14.5 Synthesis of Elements and Evolution of Stars | ~ /U | | | INDEX OF AUTHORS | 311 | | | INDEX | 314 |