CONTENTS

I. TH	HE EQUATION OF TRANSF	ER .	•		•	.]
1.	Introduction	•			•	.]
2.	Definitions	•			•	.]
	2.1. The specific intensity .					.]
	2.2. The net flux					. 2
	2.3. The density of radiation	•				. 3
3.	Absorption coefficient. True	absorption	n and	scatterin	ng. Pha	ase
	function	•	•	•	•	. 5
	The emission coefficient .	•	•	•	•	. 7
5.	The source function .	•	•	•	•	. 8
6.	The equation of transfer .	•	•	•	•	. 8
7.	The formal solution of the equ	ation of tra	nsfer	•	•	. 9
8.	The equation of transfer for		ng atm	osphere.	The fl	
0	integral for conservative cas			•	•	. 10
	The equation of transfer for p	-	-		•	. 11
	Plane-parallel scattering atmo	-		•		. 13
11.	Problems in semi-infinite plane net flux	e-parallel atı	mosphe	res with	a consta	int . 14
	11.1. Isotropic case .			•	•	. 15
	11.2. The case of Rayleigh's p	hase function	n	•	•	. 17
12.	Axially symmetric problems non-conservative cases .	in semi-infi	inite at	mospher	es and	in . 18
13.	Diffuse reflection and transmis	sion				. 20
	Problems with spherical symm					. 23
	The representation of polarized	_				. 24
10.	15.1. An elliptically polarized	•				. 25
	15.2. The Stokes parameters for		arily no	darized li	ight	. 28
	15.3. Natural light as a mix		• -		•	
	polarized streams of ed	qual intensit	y	•		. 30
	15.4. The representation of an of two independent op				a mixtu	re . 31
	15.5. The law of transformat rotation of the axes	oion of the	Stokes .	parame	ters for	a . 34
16.	Rayleigh scattering .	•	•		•	. 35
17.	The equation of transfer for a accordance with Rayleigh's	-	ere scat	tering ra	diation	in . 37
	17.1. The equation of transfer				•	. 38
	17.2. The explicit form of the	•	x		•	. 40
	z z oup.ioi ioiiii or ono	r		-	-	

CONTENTS

atmosphere	adiative	·	er for al	·	on scatte	rmg
17.4. The basic problem	in the th	eory of	f the illu	ıminatio	on of the	sky
18. Scattering by anisotropic	particle	s.				
19. Resonance line scattering	g	•				
BIBLIOGRAPHICAL NOTES	•	•	•	•		•
II. QUADRATURE FORMU	T A E					
20. The method of replacing				·		٠
linear equations.	, me equ	iauons	or train	sier by	a system	
21. The construction of quad	drature fo	ormulae	е.			
22. Various special quadratu						
22.1. Gauss's formula						
22.2. Radau's formula					•	
22.3. The quadrature fo	rmula be	ased or	the ze	ros of t	the Lagu	erre
polynomials	•	•		•	•	•
23. Quadrature formulae for	evaluati	ng mea	n inten	sities an	d fluxes	in a
stellar atmosphere	•	•	•	•	•	•
BIBLIOGRAPHICAL NOTES	•	. •	•	•	•	•
III. ISOTROPIC SCATTERII	NG				•	
24. Introduction .	•					
25. The solution of the proble of isotropic scattering	em with a	consta	ant net f	dux und	er condit	ions
25.1. The solution of the	equation	n of tra	nsfer in	the nth	approxi	ma-
tion .	•	•	•		•	
25.2. Some elementary is	dentities				•	
25.3. A relation between Legendre polyno		acteris	tic roots	and the	e zeros of	the
25.4. The flux and the K		l .				
25.5. The source function	_		field.	The law	of darke	ning
25.6. The elimination of closed form. The	the const	ants an				
25.7. The Hopf-Bronstei			•			
25.8. The constants of in			•			
25.9. The numerical form	•		s in the	first fou	r approxi	ma-
tions .	•	•	•	•		
26. The problem of diffuse re	eflection.	The c	ase $\boldsymbol{\varpi_0}$	< 1		
26.1. The solution of the	associate	ed hom	nogeneou	us syste	m.	
26.2. A particular integr	al.	•				
26.3. The solution in the	nth app	roxima	tion	٠	•	
26.4. An identity .	•		•	•	•	

	26.5. The elimination of the construction of diffuse reflection in clos			ression o	of the lav	w
27.	The law of diffuse reflection in the	conserv	ative ca	se	•	
Ви	BLIOGRAPHICAL NOTES .				•	
IV. I	PRINCIPLES OF INVARIANCE			•	•	
28.	Principles of invariance .		•		•	
29.	The mathematical formulation of	the prin	ciples of	invariar	nce	
	29.1. The invariance of the law of	diffuse	$\stackrel{-}{\text{reflection}}$	n		
	29.2. The invariance of the law of	darkeni	ng		•	
	29.3. An invariance arising from t	he asym	ptotic s	olution a	t infinit	y
3 0.	The integral equation for the scatt	tering fu	nction	•		•
31.	The principle of reciprocity				•	
32.	An integral equation between $I(0,$	μ) and μ	$S^{(0)}(\mu, \mu')$)	•	
33.	The explicit forms of the integral	equation	ns in the	e case of	isotropi	ic
	scattering	•	•	•	•	
	33.1. The integral equation for $S(y)$	$\mu, \mu_0)$	•		•	
	33.2. The law of darkening in the	problen	n with a	constan	t net flu	x
	33.3. A derivation of the Hopf-Broof invariance .	onstein r •	elation f	rom the	principle	es •
34.	The reduction of the integral equa	tion for	S for th	e case		
	$p(\cos\Theta) = \boldsymbol{\varpi_0}(1 + x\cos\Theta)$		•	•	•	•
	34.1. The reduction of the equation	on for S^0	0)	•	•	. 1
	34.2. The expression of $S^{(1)}$ in term	ms of an	H-func	tion	•	.]
3 5.	The reduction of the integral equa	tion for	S for th	e case		
	$p(\cos\Theta) = \frac{3}{4}(1+\cos^2\Theta) .$	•	•	•	•	.]
3 6.	The principles of invariance when field is taken into account	the pol	larizatio	n of the	radiatio	on .]
D		•	•	•	•	.]
ВП	BLIOGRAPHICAL NOTES .	•	•	•	•	•
	HE H-FUNCTIONS .	•	•	•	•	
	Introduction	•	•	•	•	.]
	Integral properties of the H-funct		•	•	•	.]
39.	The relation of the H -function of division and characteristic root equation (1)					
	39.1. The representation of the sol integral	ution of	equation	a (32) as	a comple	
40.	The explicit solution of the integra	al equat	ion satis	fied by I	$H(\mu)$	
	A practical method for evaluating				•	
	The <i>H</i> -functions for problems in i				•	
	, ~	•			•	•

VI. PROBLEMS WITH GENERAL LAWS OF SCATTERING	. 127
43. Introduction	. 127
44. The law of diffuse reflection for scattering in accordance we Rayleigh's phase function	rith . 128
44.1. The form of the solution for $S^{(0)}(\mu, \mu_0)$. 129
44.2. The verification of the solution and the expression of the c stant c in terms of the moments of $H(\mu)$.	on- . 130
45. The law of darkening for the problem with a constant net flux and Rayleigh's phase function	for . 133
46. The law of diffuse reflection for scattering in accordance with phase function $\varpi_0(1+x\cos\Theta)$	the . 135
46.1. The form of the solution for $S^{(0)}(\mu, \mu_0)$. 136
46.2. The verification of the solution and the expression of the c stant c in terms of the moments of $H(\mu)$.	on- . 136
47. Illustration and comparison of the laws of diffuse reflection for cases (i) isotropic scattering, (ii) Rayleigh's phase function, a (iii) the phase function $\mathbf{w}_0(1+x\cos\Theta)$.	the
47.1. The intensity of the light which has been scattered once	. 145
48. The equation of transfer for a general phase function and its solut in the <i>n</i> th approximation	ion . 149
48.1. The equation of transfer for the problem of diffuse reflect	
and transmission and its reduction	. 150
48.2. The equivalent system of linear equations in the n th appropriation	xi- . 151
48.3. The solution of the associated homogeneous system .	. 151
48.4. A particular integral of the non-homogeneous system (94)	. 154
48.5. The general solution of the system of equations (94) .	. 156
48.6. The problem with a constant net flux in conservative cases	. 156
48.7. The solution for the phase function $1+\varpi_1P_1(\cos\Theta)+\varpi_2P_2(\cos\Theta) \qquad . \qquad . \qquad .$. 157
48.8. The exact solutions for the standard problems .	. 158
Bibliographical Notes	. 159
VII. PRINCIPLES OF INVARIANCE (continued)	. 161
49. Introduction	. 161
50. The principles of invariance	. 161
51. Integral equations for the scattering and the transmission function	ons 166
52. The principle of reciprocity	. 171
53. The reduction of the integral equations (29)-(32) for the case which the phase function is expressible as a series in Legende	dre
polynomials	. 177
54. The integral equations for the case of isotropic scattering .	. 180
Bibliographical Notes	. 182

V111.	THE X - AND THE Y -FUNCTIONS						
55.	Definitions and alternative forms of the basic equations						
56.	Integro-differential equations for $X(\mu, \tau_1)$ and $Y(\mu, \tau_1)$						
57.	Integral properties of the X - and Y -functions						
58.	The non-uniqueness of the solution in the conservative case. The standard solution						
	58.1. Standard solutions						
59.	Rational representations of the X - and Y -functions in finite approxi-						
	mations						
	59.1. The elimination of the constants and the expression of the laws of reflection and transmission in closed forms						
60.	Solutions for small values of $ au_1$						
	60.1. The moments of $X^{(2)}(\mu)$ and $Y^{(2)}(\mu)$						
	60.2. The correction of the approximate solutions						
	60.3. The standard solutions						
Bre	BLIOGRAPHICAL NOTES						
IX. I	DIFFUSE REFLECTION AND TRANSMISSION						
	Introduction. Questions of uniqueness						
	The laws of diffuse reflection and transmission for isotropic scattering						
	62.1. A meaning for the X- and Y-functions						
	62.2. The ambiguity in the solutions of the integral equations in the case $\omega_0 = 1$ and its resolution by an appeal to the K-integral						
	62.3. The verification that Q satisfies the differential equation of Theorem 7, \S 58						
63.	Approximate solutions for small values of τ_1 in the case of isotropic scattering						
	63.1. The approximate solution for the conservative isotropic case.						
64.	Diffuse reflection and transmission on Rayleigh's phase function .						
	64.1. The form of the solutions for $S^{(0)}(\mu, \mu_0)$ and $T^{(0)}(\mu, \mu_0)$						
	64.2. Verification of the solution and a relation between the constants c_1 and c_2						
	64.3. The resolution of the ambiguity and the arbitrariness in the solution						
	64.4. The law of diffuse reflection and transmission						
65.	Diffuse reflection and transmission for scattering in accordance with the phase function $w_0(1+x\cos\Theta)$						
	65.1. The form of the solutions for $S^{(0)}(\mu, \mu_0)$ and $T^{(0)}(\mu, \mu_0)$						
	65.2. Verification of the solution and the evaluation of the constants						
	c_1 and c_2 in terms of the moments of $X(\mu)$ and $Y(\mu)$. 65.3. The law of diffuse reflection and transmission						
ea	Illustrations of the laws of diffuse reflection and transmission .						
DIB	LIOGRAPHICAL NOTES						

	AYLEIGH SCATTERING A ATMOSPHERES	ND SCAT	TERING	BY PI	ANETARY	
67.	Introduction					
68.	The problem with a constant an electron scattering atm		The rad	iative eq	uilibrium of	•
	68.1. The general solution approximation .	of the equal \cdot	ations of	transfei	in the nth	
	68.2. The solution satisfying	the necess	ary bour	dary co	nditions .	
	68.3. The characteristic root third approximation		onstants	of integ	ration in the	!
	68.4. The elimination of the and $I_r(0, \mu)$ in terms	constants of <i>H</i> -funct	and the dions	expressio	on of $I_l(0, \mu)$	
	68.5. Relations between the	constants	q and c			
	68.6. Passage to the limit of solutions for $I_l(0, \mu)$			ation an	d the exact	'
	68.7. The exact laws of dark The degree of polari	kening in t	he two st	ates of j	polarization. ation .	
69.	The reduction of the equation reflection and transmission	on of trans	_			ŧ
70.	The law of diffuse reflection be scattering	y a semi-in	finite atn	osphere •	for Rayleigh	ı
	70.1. The form of the solution	on for $S^{(0)}$	μ, μ'			
	70.2. Verification of the solution q and c in terms of t	tion and th	e expres			
	70.3. The law of diffuse refle				•	
	70.4. The law of diffuse ref	lection of	an incid	ent bear	n of natural	
71.	The law of diffuse reflection a	and transm	ission for	Rayleig	h scattering	
	The fundamental problem is atmospheres and its soluti diffuse reflection and trans	n the theor	y of scat	tering b	y planetary	
				•	•	
	72.1. The reduction to the according to a phase	standard p function	roblem 1	n case o	of scattering .	
	72.2. Illustrations of the for	mulae of §	72.1	•		
	72.3. The reduction to the according to a phase	standard p -matrix	roblem i	n case o	of scattering .	
	72.4. Expressions for $\gamma_l^{(1)}(\mu)$, Rayleigh scattering .	$\gamma_r^{(1)}(\mu)$, $s_l(\mu)$	ι), ε _τ (μ) ε	and $ar{s}$ in	the case of	
73.	The intensity and polarization	on of the s	ky radia	tion		
74.	Resonance line scattering an	d scatterin	g by ani	otropic	particles .	
	LIOGRAPHICAL NOTES .			•		

	THE RADIATIVE EQUILIBRIUM OF A STELLAR ATMO- SPHERE
	The concept of local thermodynamic equilibrium
76	The radiative equilibrium of a stellar atmosphere in local thermodynamic equilibrium
77.	The method of solution
78	. The temperature distribution in a grey atmosphere
79	. The temperature distribution in a slightly non-grey atmosphere .
	79.1. The solution in the (2, 1) approximation
	79.2. The solution in the (2, 2) approximation
80	. The nature and the origin of the stellar continuous absorption coefficient as inferred from the theory of radiative equilibrium .
	80.1. The method of analysis and inference
	80.2. The continuous absorption coefficient of the solar atmosphere
	80.3. The negative hydrogen ion as the source of continuous absorption in the atmospheres of the sun and the stars
81	. Model stellar atmospheres
	81.1. A model solar atmosphere in the (2, 1) approximation .
	81.2. A model solar atmosphere in the (2, 2) approximation .
	81.3. Model atmospheres in higher approximations
Br	BLIOGRAPHICAL NOTES
XII.	FURTHER ASTROPHYSICAL PROBLEMS
82	. Introduction
83	. Schuster's problem in the theory of line formation
	83.1. The case $I^{(s)}(\tau_1, +\mu) = I^{(0)} + I^{(1)}\mu$
84	. The theory of line formation, including the effects of scattering and
	absorption
	84.1. The solution of the equation of transfer (24) in the nth approximation
	84.2. The elimination of the constants and the expression of the
	solution in closed form
	84.3. Passage to the limit of infinite approximation
	84.4. The evaluation of $\lim_{n\to\infty} \left(\sum_{\alpha=1}^n k_{\alpha}^{-1} - \sum_{j=1}^n \mu_j\right)$. The exact solution
	84.5. Exact formulae for the residual intensity
85	. The softening of radiation by multiple Compton scattering .
	85.1. The equation of transfer and its approximate form
	85.2. The reduction to a boundary-value problem
	85.3. The solution of the boundary-value problem
	85.4. The spectral distribution of the emergent radiation .
86	. The broadening of lines by electron scattering

CONTENTS

86.1. The Fourier transf	orm of equat	ion (118)	•	•	•
86.2. The solution of eq	uation (124) i	n the first	approxi	nation	
BIBLIOGRAPHICAL NOTES		•	•	•	•
XIII. MISCELLANEOUS PF	ROBLEMS	•		•	
87. Introduction .				•	
88. An example of a probincident radiation and				es with	no •
89. The relation of H -functi Schwarzschild-Milne theory					
89.1. The H -function in of the solution of Milne type					
89.2. The relation between of solutions of in	itegral equatio	ons of the			
type in non-cons			•	•	•
89.3. The 'pseudo-proble		•	•	•	•
90. The diffusion of imprisor		through a	gas	•	•
90.1. The equations of the	he problem	•	•	•	•
90.2. The general metho	d of solution	•	•		
90.3. The form of the sol	lution in finite	approxim	ations		•
90.4. The solution in the	e first approxi	mation	•	•	
91. The transfer of radiation	n in atmosphe	eres with s	pherical	symmet	ry.
91.1. The solution in the	e first approxi	imation	•		
91.2. The equations for	the second ap	proximation	on .		
91.3. The solution of the the case $\kappa \rho \propto r^{-1}$		the second	d approx	imation	for .
BIBLIOGRAPHICAL NOTES		•	•		
APPENDIX I		•	•		
92. The exponential integral	s	•	•	•	
93. The functions $F_j(\tau, \mu)$		•	•	•	
94. The integrals $G_{n,m}(\tau)$ and	$G'_{n,m}(au)$.				•
BIBLIOGRAPHICAL NOTES	• • • • • •	•		•	•
APPENDIX II	•	•	•	•	•
	on theor-	•	•	•	•
95. A problem in interpolation	on theory.	•	•	•	•
APPENDIX III .		•	•	•	•
96. The problem in semi-infinant for scattering account					
SUBJECT INDEX .		•	•		
INDEX OF DEFINITIONS		•	•	•	