Contents

1	INT	RODUCTION	
	1.1	Prologue	1
	1.2	Anthropic Definitions	15
2	DES	SIGN ARGUMENTS	
	2.1	Historical Prologue	27
	2.2	The Ancients	31
	2.3	The Medieval Labryrinth	46
	2.4	The Age of Discovery	49
	2.5	Mechanical Worlds	55
	2.6	Critical Developments	68
	2.7	The Devolution of Design	83
	2.8	Design in Non-Western Religion and Philosophy	92
	2.9	Relationship Between The Design Argument and the Cos-	
		mological Argument	103
3	мо	DERN TELEOLOGY AND THE ANTHROPIC	
	PRI	NCIPLES	
	3.1	Overview: Teleology in the Twentieth Century	123
	3.2	The Status of Teleology in Modern Biology	127
	3.3	Henderson and the Fitness of the Environment	143
	3.4	Teleological Ideas and Action Principles	148
	3.5	Teleological Ideas in Absolute Idealism	153
	3.6	Biological Constraints on the Age of the Earth: The First	
		Successful Use of an Anthropic Timescale Argument	159
	3.7	Dysteleology: Entropy and the Heat Death	166
	3.8	The Anthropic Principle and the Direction of Time	173
	3.9	Teleology and the Modern 'Empirical' Theologians	180
	3.10	Teleological Evolution: Bergson, Alexander, Whitehead,	
		and the Philosophers of Progress	185
	3.11	Teilhard de Chardin: Mystic, Paleontologist and Teleo-	
		logist	195

xviii Contents

4	THE REDISCOVERY OF THE ANTHROPI	C
	PRINCIPLE	240
	4.1 The Lore of Large Numbers	219
	4.2 From Coincidence to Consequence	220
	4.3 'Fundamentalism'	224
	4.4 Dirac's Hypothesis	231
	4.5 Varying Constants	238
	4.6 A New Perspective	243
	4.7 Are There Any Laws of Physics?	255
	4.8 Dimensionality	258
5	THE WEAK ANTHROPIC PRINCIPLE IN	
	PHYSICS AND ASTROPHYSICS	
	5.1 Prologue	288
	5.2 Atoms and Molecules	295
	5.3 Planets and Asteroids	305
	5.4 Planetary Life	310
	5.5 Nuclear Forces	318
	5.6 The Stars	327
	5.7 Star Formation	339
	5.8 White Dwarfs and Neutron Stars	340
	5.9 Black Holes	347
	5.10 Grand Unified Gauge Theories	354
6	THE ANTHROPIC PRINCIPLES IN CLASS	SICAL
	COSMOLOGY	
	6.1 Introduction	367
	6.2 The Hot Big Bang Cosmology	372
	6.3 The Size of the Universe	384
	6.4 Key Cosmic Times	385
	6.5 Galaxies	387
	6.6 The Origin of the Lightest Elements	398
	6.7 The Value of S	401
	6.8 Initial Conditions	408
	6.9 The Cosmological Constant	412
	6.10 Inhomogeneity	414
	6.11 Isotropy	419
	6.12 Inflation	430
	6.13 Inflation and the Anthropic Principle	434
	6.14 Creation ex nihilo	440
	6.15 Boundary Conditions	444

Contents xix

7	\mathbf{QU}	ANTUM MECHANICS AND THE ANTHROPIC	
	PRI	NCIPLE	
	7.1	The Interpretations of Quantum Mechanics	458
	7.2	The Many-Worlds Interpretation	472
	7.3	The Friedman Universe from the Many-Worlds Point of	
		View	49 0
	7.4	Weak Anthropic Boundary Conditions in Quantum Cos-	
		mology	497
	7.5	Strong Anthropic Boundary Conditions in Quantum Cos-	
		mology	503
8	тні	E ANTHROPIC PRINCIPLE AND	
O		CHEMISTRY	
	8.1	Introduction	510
	8.2	The Definitions of Life and Intelligent Life	511
	8.3	The Anthropic Significance of Water	524
	8.4	The Unique Properties of Hydrogen and Oxygen	541
	8.5	The Anthropic Significance of Carbon, Carbon Dioxide	
		and Carbonic Acid	545
	8.6	Nitrogen, Its Compounds, and other Elements Essential	
		for Life	548
	8.7	Weak Anthropic Principle Constraints on the Future of	
		the Earth	556
0	TII	E SPACE-TRAVEL ARGUMENT AGAINST	
9		E EXISTENCE OF EXTRATERRESTRIAL	
		ELLIGENT LIFE	
		The Basic Idea of the Argument	576
	9.2	General Theory of Space Exploration and Colonization	578
	9.3	Upper Bounds on the Number of Intelligent Species in the	370
	7.5	Galaxy	586
	9.4	Motivations for Interstellar Communication and Explora-	200
	<i>,</i> , ,	tion	590
	9.5	Anthropic Principle Arguments Against Steady-State Cos-	
	7. 5	mologies	601
10	m * * *		
10		E FUTURE OF THE UNIVERSE	613
		Man's Place in an Evolving Cosmos	615
		Early Views of the Universe's Future	621
	10.3	Global Constraints on the Future of the Universe	021

XX		Contents
10.4 The	Future Evolution of Matter: Classical Timescales	641
10.5 The	Future Evolution of Matter: Quantum Timescales	647
10.6 Life	and the Final State of the Universe	658
INDEX		683

