1.	Introduction	1
1.1.	General Remarks	1
1.2.	Difficulties of Some Reaction Theories	3
2.	Reformulation of the Schrödinger Equation	6
3.	Discussion of the Basis Wave Functions for Nuclear Systems	9
3.1.	General Remarks	9
3.2.	Qualitative Discussion of Cluster Correlations	9
3.3.	Construction of Oscillator Cluster Wave Functions	11
3.4.	Discussion of ⁸ Be as an Illustrative Example	14
3.5.	Effects of Antisymmetrization	18
3.5a.	Fermions without Mutual Interaction in a Square-Well Potential	18
3.5b.	The Lowest $4^+ \alpha$ -Cluster State of ⁸ Be	19
3.5c.	Mathematical Equivalence of the Lowest ⁶ Li States Described in the t + ³ He	
	and the d + α Oscillator Cluster Representations	23
3.5d.	Summary	24
3.6.	Applications of Oscillator Cluster Representations to a Qualitative Description	
	of Low-Lying Levels in Light Nuclei	25
3.6a.	Li and Be	25
3.6b.	oHe, oLi, and oBe	21
3.6C.	a-Cluster States of 190	28
3.6d.	Brief Remarks	31
3.7.	Construction of Generalized Cluster wave Functions	32
3.7a.	Introduction of Jacobi Coordinates	33
3.70.	Introduction of Parameter Coordinates	20
3.7C.		30
3.70.	Summary	40
4.	Formulation of a Unified Microscopic Nuclear Structure and	
	Reaction Theory	41
4.1.	General Remarks	41
4.2.	Specific Examples	42
4.2a.	$n + \alpha$ Scattering	42
4.2b.	$d + \alpha$ Scattering	45
4.2c.	Discussion	47
4.3.	Extension to General Systems	48
5.	Bound-State Calculations	51
5.1.	General Remarks	51
5.2.	Calculation of Matrix Elements	52
5.2a.	Evaluation of Matrix Elements by the Cluster-Coordinate Technique – Example of ⁸ Be	53
5.2b.	Evaluation of Matrix Elements by the Generator-Coordinate Technique – Example	
	of ⁸ Be	58

5.3.	Ground and Low Excited States of ⁶ Li	64
5.3a.	Introduction	64
5.3b.	Calculation With a Nucleon-Nucleon Potential Containing a Hard Core – Accurate	
	Treatment of the Jastrow Factor	65
5.3c.	Calculation with a Nucleon-Nucleon Potential Containing a Soft Core – Approximate	
	Treatment of the Jastrow Factor	69
5.3d.	Calculation with a Nucleon-Nucleon Potential Containing no Repulsive Core	75
5.3e.	Summary	79
5.4.	Low-Energy $T = 0$ States of ${}^{12}C$	80
5.5.	Low-Lying Levels of ⁷ Be	83
5.6.	Concluding Remarks	85
6.	Further Comments About the Pauli Principle	87
6.1.	General Remarks	87
6.2	Cluster Overlapping and Pauli Principle	87
6.3	Energetical Favouring of a Cluster Inside a Large Nucleus	94
0.0.		74
7.	Scattering and Reaction Calculations	106
7.1.	General Remarks	106
7.2.	Derivation of Coupled Equations	106
7.2a.	Single-Channel Problem	106
7.2b.	Coupled-Channel Problem	112
7.2c.	Reaction Calculations Using Hulthén-Kohn-Type Variational Functions	115
7.3.	Quantitative Results	117
7.3a.	³ He + α Elastic Scattering	118
7.3b.	$l = 0$ Phase-Shift in $\alpha + \alpha$ scattering	120
7.3c.	Specific Distortion Effects in $d + \alpha$ Scattering	124
7.3d.	Effect of Reaction Channels on ³ He + ³ He Scattering Cross Sections	126
7.3e.	α + ¹⁶ O Scattering – Utilization of the Generator-Coordinate Technique	129
7.3f.	$p + \alpha$ Scattering Around 3/2 ⁺ Resonance Level in ⁵ Li	131
7.3g.	α + α Scattering with Specific Distortion Effect and a Nucleon-Nucleon	
	Potential Containing a Repulsive Core	134
7.3h.	$p + {}^{3}He$ and $n + t$ Scattering Calculations	136
7.3i.	Coupled-Channel Study of $t(p, n)$ ³ He Reaction	138
7.4.	Concluding Remarks	140
8	Introductory Considerations About the Derivation of General	
•••	Nuclear Properties	142
9 1	Convrol Romorka	140
0.1.	Introduction of Effective Hemiltonians	142
83	Flimination of Linear Dependencies	144
8.4.	Concluding Remarks	147
0	Proit Wigner Decompose Formulae	
9.	Breit-wigner Resonance Formulae	150
9.1.	General Remarks	150
9.2.	Single-Level Resonance Formula for Pure Elastic-Scattering	150
9.2a.	Derivation of the Resonance Formula	150
9.20.	Discussion of the Resonance Formula	154
9.2C.	Existence of Sharp Resonances	155
9.2d.	Discussion of a Simple Resonance Model	160

VIII

9.3.	Many-Level Resonance Formula for Pure Elastic-Scattering	162
9.4.	Single-Level Resonance Formula Including Inelastic and Rearrangement Processes	165
9.4a.	Derivation of the Resonance Formula	165
9.4b.	Application of the Resonance Formula to a Specific Example Involving Two	
	Open Channels	168
9.5.	Mutual Influence of Resonance Levels in Inelastic and Rearrangement Processes	174
9.5a.	Derivation of a Two-Level Breit-Wigner Formula	175
9.5b.	A Specific Example	179
9.6.	Behaviour of the Partial Level Width Near a Threshold and Energy-Dependent	
	Width Approximation	184
10.	Resonance Reactions and Isobaric-Spin Mixing	186
10.1.	General Remarks	186
10.2.	Isobaric-Spin Mixing in the Compound Region	187
10.2a.	Derivation of a Two-Level Resonance Formula	187
10.2b.	The 16.62 and 16.92 MeV States in ⁸ Be as a Specific Example	192
10.3.	Isobaric-Spin Mixing in the Incoming Channel	195
10.3a.	Qualitative Description	195
10.3b.	Quantitative Formulation in the Case of a Single Open Channel	197
10.3c.	Brief Discussion in the Case of Many Open Channels	205
11.	Optical-Model Potentials for Composite Particles	206
11.1	General Remarks	206
11.2	Optical-Model Description of Elastic-Scattering Processes	207
11.2a.	Preliminary Remarks About the Optical-Model Potential	207
11.2b.	Optical-Model Potential for Pure Elastic Scattering	208
11.2c.	Optical-Model Potential in the Presence of Reaction Channels	214
11.2d.	Mean Free Path of a Cluster in a Target Nucleus	219
11.3.	Specific Examples	221
11.3a.	³ He + α Scattering	222
11.3b.	$p + {}^{16}O$ Scattering	224
11.3c.	$\alpha + {}^{16}O$ Scattering	227
11.4.	Features of Effective Local Potentials between Nuclei	230
11.4a.	Wave-Function Equivalent Local Potentials	230
11.4b.	Phase-Equivalent Local Potentials	232
12.	Direct Reactions	243
12.1.	General Remarks	243
12.2.	Derivation of the General Formulae	243
12.3.	Specific Examples	251
12.3a.	³ He (d, p) α Reaction	251
12.3b.	$^{6}Li(p, ^{3}He) \alpha$ Reaction	254
12.4.	Influence of the Pauli Principle on Direct-Reactions	255
12.4a.	Study of Direct-Reaction Mechanisms in the Plane-Wave Born Approximation	256
12.4b.	Study of Direct-Reaction Mechanisms with the Coupled-Channel Formulation	260
12.5.	Concluding Remarks	264

13.1. General Remarks 265 31.2. Specific Examples to Study the Influence of Antisymmetrization 266 31.2. Specific Examples to Study the Influence of Antisymmetrization 267 31.2. Specific Examples to Study the Influence of Antisymmetrization 267 31.3. Further Discussion of the Odd-Even Feature in the Effective Potential between Nuclei 272 31.4. Collective States 276 14.1. General Remarks 276 14.2. Rotational States of Even-Even Nuclei with K = 0 276 14.3. Generalization of Rotational Wave Functions 283 14.4. Energetical Preference of Rotational Configurations 293 14.5. Electromagnetic Transitions between Rotational States 297 14.6. Relationship with other Descriptions of Nuclear Rotational States 297 14.8. Specific Examples 302 302 14.8. Specific Examples 302 302 14.8. Specific Examples 302 302 14.8. Specific Examples 302 303 14.8. Specific Examples 302 303	13.	Some Considerations About Heavy-Ion Transfer Reactions	265
13.2.Specific Examples to Study the Influence of Antisymmetrization26613.2. $\alpha + 6'$ Li Elastic Scattering at Low Energies26713.3.Further Discussion of the Odd-Even Feature in the Effective Potential between Nuclei27213.4.Concluding Remarks27414.Collective States27614.1.General Remarks27614.2.Rotational States of Even-Even Nuclei with K = 027614.3.Generalization of Rotational Wave Functions28814.4.Energicical Preference of Rotational Configurations29314.5.Electromagnetic Transitions between Rotational Levels29714.6.Relationship with other Descriptions of Nuclear Rotational States29914.7.Construction of Intrinsic Wave Functions for Quantitative Studies of Collective States in Medium-Heavy and Heavy Nuclei30114.8. $\alpha + 16'$ Cluster States in 20Ne30214.8. $\alpha + 16'$ Cluster States in 22Ne30314.8. $\alpha + 16'$ Cluster States in 22Ne30314.9.Concluding Remarks30515.Brief Discussion of Time-Dependent Problems30615.1.General Remarks30615.2.Calulation of the Level Width $- 6'$ Li as an Example for a Decaying System31015.3.Time-Dependent Problems30915.4.Coulding Remarks30015.5.Calulation of the Level Width $- 6'$ Li as an Example for a Decaying System31016.1.General Remarks30017.1.Gen	13.1.	General Remarks	265
13.2a. $a + {}^{+}$ Li Elastic Scattering at Low Energies26713.2b. ${}^{-}$ Li (p., ${}^{-}$ He) a Reaction in States of Large Orbital Angular Momentum27013.3.Further Discussion of the Odd-Even Feature in the Effective Potential between Nuclei27213.4.Concluding Remarks27414.Collective States27614.1.General Remarks27614.2.Rotational States of Even-Even Nuclei with K = 027614.3.General Remarks27614.4.Energetical Preference of Rotational Configurations28814.5.Electromagnetic Transitions between Rotational Levels29314.6.Relationship with other Descriptions of Nuclear Rotational States29914.7.Construction of Intrinsic Wave Functions for Quantitative Studies of Collective States in Medium-Heavy and Heavy Nuclei30114.8.Specific Examples30214.8.Backbending30514.8.Backbending30514.8.Backbending30515.Brief Discussion of Time-Dependent Problems30615.1.General Remarks30615.2.Caluation of the Level Width $- {}^{-}$ Li as an Example for a Decaying System31015.2.Guantitative Relationship between the Level Width and the Lifetime of a Compound Nuclear State32015.2.General Remarks32015.3.Time-Dependent Projection Equation with Time-Dependent Interaction31516.Qualitative Considerations of Some Nuclear Problems3	13.2.	Specific Examples to Study the Influence of Antisymmetrization	266
13.2b. ${}^{6}Li(p, {}^{3}He) \propto Reaction in States of Large Orbital Angular Momentum27013.3.Further Discussion of the Odd-Even Feature in the Effective Potential betweenNuclei77213.4.Concluding Remarks77613.4.Collective States27614.1.General Remarks77614.2.Rotational States of Even-Even Nuclei with K = 027614.3.Generalization of Rotational Wave Functions28814.4.Energetical Preference of Rotational Configurations28314.5.Electromagnetic Transitions between Rotational Levels29714.6.Rotationship with other Descriptions of Nuclear Rotational States29914.7.Construction of Intrinsic Wave Functions for Quantitative Studies of CollectiveStates in Medium-Heavy and Heavy Nuclei30114.8.\alpha + 160 Cluster States in 2^{2}Ne30314.8.\alpha + 160 Cluster States in 2^{2}Ne30314.8.\alpha + 160 Cluster States in 2^{2}Ne30314.8.Backbending30515.Brief Discussion of Time-Dependent Problems30615.1.General Remarks30615.2.Concluding Remarks30615.3.Relationship between the Lifetime of a Compound State and Its Level Width30715.2.Calculation of the Level Width - ^{6}Li as an Example for a Decaying System31015.3.Time-Dependent Probabilities32016.4.General Remarks32016.5.Qualitative Considerations of Some Nuclear Problems$	13.2a.	α + ⁶ Li Elastic Scattering at Low Energies	267
13.3.Further Discussion of the Odd-Even Feature in the Effective Potential between Nuclei272 27313.4.Concluding Remarks27414.Collective States27614.1.General Remarks27614.2.Rotational States of Even-Even Nuclei with K = 027614.3.Generalization of Rotational Wave Functions28814.4.Energetical Preference of Rotational Configurations29314.5.Electromagnetic Transitions between Rotational Levels29714.6.Relationship with other Descriptions of Nuclear Rotational States29914.7.Construction of Intrinsic Wave Functions for Quantitative Studies of Collective States in Medium-Heavy and Heavy Nuclei30114.8.Specific Examples30214.8.Specific Examples30214.8.Sackbending30514.8.Sackbending30514.8.General Remarks30615.1.General Remarks30615.2.Concluding Remarks30615.2.Concluding Remarks30615.2.Colculationship between the Lifetime of a Compound State and Its Level Width Nuclear State30915.2.Colculationship between the Level Width and the Lifetime of a Compound Nuclear State30015.3.Time-Dependent Problems30015.4.General Remarks32015.5.Qualitative Considerations of Some Nuclear Problems32016.4.General Remarks32017.5.Qualitative Consideratio	13.2b.	⁶ Li (p, ³ He) α Reaction in States of Large Orbital Angular Momentum	270
Nuclei27213.4.Concluding Remarks27414.Collective States27614.1.General Remarks27614.2.Rotational States of Even-Even Nuclei with K = 027614.3.Generalization of Rotational Wave Functions28814.4.Energetical Preference of Rotational Configurations29314.5.Electromagnetic Transitions between Rotational Levels29714.6.Relationship with other Descriptions of Nuclear Rotational States29914.7.Construction of Intrinsic Wave Functions for Quantitative Studies of Collective States in Medium-Heavy and Heavy Nuclei30114.8.Specific Examples30214.8. $\alpha + 160$ Cluster States in 20Ne30314.8.Specific Examples30214.8.A totional States in 22Ne30314.8.Barief Discussion of Time-Dependent Problems30615.1.General Remarks30615.2.Concluding Remarks30715.2.4.Relationship between the Level Width and the Lifetime of a Compound Nuclear State30915.2.Quantitative Relationship between the Level Width and the Lifetime of a Compound Nuclear State30216.3.General Remarks32015.4.Qualitative Considerations of Some Nuclear Problems32016.5.Otical Resonances in Mirror Levels32016.6.Qualitative Considerations of Some Nuclear Problems32016.7.General Remarks32016.8.Reduced Widths of	13.3.	Further Discussion of the Odd-Even Feature in the Effective Potential between	
13.4.Concluding Remarks27414.Collective States27614.1.General Remarks27614.2.Rotational States of Even-Even Nuclei with K = 027614.3.Generalization of Rotational Wave Functions28814.4.Energetical Preference of Rotational Configurations29314.5.Electromagnetic Transitions between Rotational Levels29714.6.Relationship with other Descriptions of Nuclear Rotational States29914.7.Construction of Intrinsic Wave Functions for Quantitative Studies of Collective States in Medium-Heavy and Heavy Nuclei30114.8.Specific Examples30214.8.Specific Examples30214.8.Rotational States in 2Ne30314.8.Rotational States in 2Ne30314.8.Backbending30515.Brief Discussion of Time-Dependent Problems30615.1.General Remarks30615.2.Connection between the Lifetime of a Compound State and Its Level Width30715.2.Qualitative Relationship between the Level Width and the Lifetime of a Compound Nuclear State30915.2.Calculation of the Level Width - 6Li as an Example for a Decaying System31015.3.Time-Dependent Probelities32016.4.Qualitative Relationship between the Level Sidtes of 32532616.3.Reduced Widths of Nuclear Levels32016.4.Level Spectra of Nuclear Itevels32016.5.Optical Resonances in Mirror Levels </td <td></td> <td>Nuclei</td> <td>272</td>		Nuclei	272
14.Collective States27614.1.General Remarks27614.2.Rotational States of Even-Even Nuclei with K = 027614.3.Generalization of Rotational Configurations28814.4.Energetical Preference of Rotational Configurations29314.5.Electromagnetic Transitions between Rotational Levels29714.6.Relationship with other Descriptions of Nuclear Rotational States29914.7.Construction of Intrinsic Wave Functions for Quantitative Studies of Collective States in Medium-Heavy and Heavy Nuclei30114.8.Specific Examples30214.8.Specific Cluster States in 20Ne30314.8.Specific Ocluster States in 20Ne30314.8.Backbending30514.8.Backbending30514.9.Concluding Remarks30615.1.General Remarks30615.2.Quantitative Relationship between the Level Width and the Lifetime of a Compound Nuclear State30915.2.Calculation of the Level Width - ⁶ Li as an Example for a Decaying System31015.3.Time-Dependent Probabilities32016.4.Qualitative Considerations of Some Nuclear Problems32016.3.Reduced Widths and γ -Transition Probabilities32016.4.Level Spectra of Neighbouring Nuclei33115.3.Time-Dependent Probabilities32516.3.Reduced Widths of Nuclear Levels32016.4.Level Spectra of Neighbouring Nuclei332 <tr< td=""><td>13.4.</td><td>Concluding Remarks</td><td>274</td></tr<>	13.4.	Concluding Remarks	274
14.1.General Remarks27614.2.Rotational States of Even-Even Nuclei with K = 027614.3.Generalization of Rotational Wave Functions28814.4.Energetical Preference of Rotational Configurations29314.5.Electromagnetic Transitions between Rotational Levels29714.6.Relationship with other Descriptions of Nuclear Rotational States29914.7.Construction of Intrinsic Wave Functions for Quantitative Studies of Collective States in Medium-Heavy and Heavy Nuclei30114.8.Specific Examples30214.8.Specific Examples30314.8.Specific Examples30314.8.Specific Examples30314.8.Rotational States in ²⁰ Ne30314.8.8.Rotational States in ²² Ne30314.8.9.Concluding Remarks30515.9.Concluding Remarks30615.1.General Remarks30615.2.0.Quantitative Relationship between the Lifetime of a Compound State and Its Level Width Nuclear State30915.2.0.Quantitative Relationship between the Level Width and the Lifetime of a Compound Nuclear State30915.3.Time-Dependent Projection Equation with Time-Dependent Interaction31516.1.General Remarks32016.2.Coulomb-Energy Effects in Mirror Levels32016.3.Reduced Widths of Nuclear Levels32516.3.Reduced Widths of Nuclear Levels32516.3.Reduced Widths of Nuclear Levels<	14.	Collective States	276
14.2.Rotational States of Even-Even Nuclei with K = 027614.3.Generalization of Rotational Wave Functions28814.4.Energetical Preference of Rotational Configurations29314.5.Electromagnetic Transitions between Rotational Levels29714.6.Relationship with other Descriptions of Nuclear Rotational States29914.7.Construction of Intrinsic Wave Functions for Quantitative Studies of Collective301States in Medium-Heavy and Heavy Nuclei30214.8.Specific Examples30214.8.A + 16O Cluster States in 20Ne30214.8.Ackbending30514.8.Backbending30514.8.Backbending30514.8.Backbending30515.Brief Discussion of Time-Dependent Problems30615.1.General Remarks30615.2.Connection between the Lifetime of a Compound State and Its Level Width30715.2.Quantitative Relationship between the Level Width and the Lifetime of a Compound Nuclear State30915.2.Calculation of the Level Width - 6 Li as an Example for a Decaying System31016.Qualitative Considerations of Some Nuclear Problems32016.1.General Remarks32016.2.Coulomb-Energy Effects in Mirror Levels32016.3.Reduced Widths and γ -Transition Probabilities32216.3.Reduced Widths of Nuclear Levels32516.3.Reduced Widths of Nuclear Levels32516.3. </td <td>14.1.</td> <td>General Remarks</td> <td>276</td>	14.1.	General Remarks	276
14.3. Generalization of Rotational Wave Functions 288 14.4. Energetical Preference of Rotational Configurations 293 14.5. Electromagnetic Transitions between Rotational Levels 297 14.6. Relationship with other Descriptions of Nuclear Rotational States 299 14.7. Construction of Intrinsic Wave Functions for Quantitative Studies of Collective 301 14.8. Specific Examples 302 14.8. a + ¹⁶ O Cluster States in ²⁰ Ne 303 14.8. a + ¹⁶ O Cluster States in ²⁰ Ne 303 14.8. Backbending 305 14.9. Concluding Remarks 306 15.1. General Remarks 306 15.2. Connection between the Lifetime of a Compound State and Its Level Width 307 15.2. Quantitative Relationship between the Level Width and the Lifetime of a Compound Nuclear State 309 15.2. Calculation of the Level Width - ⁶ Li as an Example for a Decaying System 310 15.3. Time-Dependent Probelems 320 16.4. Qualitative Considerations of Some Nuclear Problems 320 15.3. Calculation of the Level Width - ⁶ Li as an Example for a	14.2.	Rotational States of Even-Even Nuclei with $K = 0$	276
14.4. Energetical Preference of Rotational Configurations 293 14.5. Electromagnetic Transitions between Rotational Levels 297 14.6. Relationship with other Descriptions of Nuclear Rotational States 299 14.7. Construction of Intrinsic Wave Functions for Quantitative Studies of Collective States in Medium-Heavy and Heavy Nuclei 301 14.8. Specific Examples 302 14.8. a + 16 O Cluster States in 20 Ne 303 14.8. a + 16 O Cluster States in 20 Ne 303 14.8. Backbending 305 14.8. Backbending 305 14.8. Concluding Remarks 306 15.1. General Remarks 306 15.2. Connection between the Lifetime of a Compound State and Its Level Width 307 15.2. Quantitative Relationship between the Level Width and the Lifetime of a Compound Nuclear State 309 15.2. Calculation of the Level Width – ⁶ Li as an Example for a Decaying System 310 15.3. Time-Dependent Projection Equation with Time-Dependent Interaction 315 16. Qualitative Considerations of Some Nuclear Problems 320 16.3. Reduced Widths	14.3.	Generalization of Rotational Wave Functions	288
14.5.Electromagnetic Transitions between Rotational Levels29714.6.Relationship with other Descriptions of Nuclear Rotational States29914.7.Construction of Intrinsic Wave Functions for Quantitative Studies of Collective States in Medium-Heavy and Heavy Nuclei30114.8.Specific Examples30214.8.specific Examples30214.8.specific Examples30214.8.Rotational States in 20Ne30314.8.Backbending30514.9.Concluding Remarks30615.1.General Remarks30615.2.Connection between the Lifetime of a Compound State and Its Level Width30715.2.b.Quantitative Relationship between the Level Width and the Lifetime of a Compound Nuclear State30915.2.c.Calculation of the Level Width – 6Li as an Example for a Decaying System31015.3.Time-Dependent Problems32016.4.Qualitative Considerations of Some Nuclear Problems32016.3.Reduced Widths of Nuclear Levels32016.3.Reduced Widths of Nuclear Levels32016.3.Reduced Widths of Nuclear Levels32016.3.Optical Resonances in Nuclear Reactions33116.4.Level Spectra of Neighbouring Nuclei33116.5.Optical Resonances in Nuclear Reactions33216.5.Optical Resonances in Reaction Channels33216.7.Nuclear Fission340	14.4.	Energetical Preference of Rotational Configurations	293
14.6.Relationship with other Descriptions of Nuclear Rotational States29914.7.Construction of Intrinsic Wave Functions for Quantitative Studies of Collective States in Medium-Heavy and Heavy Nuclei30114.8.Specific Examples30214.8. $x + 160$ Cluster States in 20Ne30314.8.Rotational States in 22Ne30314.8.Backbending30514.9.Concluding Remarks30615.1.General Remarks30615.2.Connection between the Lifetime of a Compound State and Its Level Width30715.2.1.General Remarks30615.2.2.Collubrative Relationship between the Level Width and the Lifetime of a Compound Nuclear State30915.2.6.Calculation of the Level Width - 6 Li as an Example for a Decaying System31015.3.Time-Dependent Problems32016.Qualitative Considerations of Some Nuclear Problems32016.1.General Remarks32016.3.Reduced Widths and γ -Transition Probabilities32216.3.Reduced Widths of Nuclear Levels32016.3.Reduced Widths and γ -Transition Probabilities32516.3.6.Optical Resonances in Nuclear Reactions33316.5.0Optical Resonances in Nuclear Reactions33316.5.1.Optical Resonances in Reaction Channels33416.5.1.Optical Resonances in Reaction Channels340	14.5.	Electromagnetic Transitions between Rotational Levels	297
14.7.Construction of Intrinsic Wave Functions for Quantitative Studies of Collective States in Medium-Heavy and Heavy Nuclei30114.8.Specific Examples30214.8. $a + 1^6 O$ Cluster States in ^{20}Ne 30314.8.Rotational States in ^{22}Ne 30314.8.Backbending30514.9.Concluding Remarks30615.Brief Discussion of Time-Dependent Problems30615.1.General Remarks30615.2.Connection between the Lifetime of a Compound State and Its Level Width30715.2.a.Relationship between the Level Width and the Lifetime of a Compound Nuclear State30915.2.c.Calculation of the Level Width - 6 Li as an Example for a Decaying System31015.3.Time-Dependent Projection Equation with Time-Dependent Interaction31516.4.Qualitative Considerations of Some Nuclear Problems32016.3.Reduced Widths and γ -Transition Probabilities32216.3.Reduced Widths of Nuclear Levels32516.3.Quicar Levels32516.3.Optical Resonances in Nuclear Reactions33316.5.Optical Resonances in Nuclear Reaction Channels33216.5.Optical Resonances in Reaction Channels33617.Nuclear Fission334	14.6.	Relationship with other Descriptions of Nuclear Rotational States	299
States in Medium-Heavy and Heavy Nuclei30114.8.Specific Examples30214.8.a. $\alpha + 160$ Cluster States in 20Ne30214.8.b.Rotational States in 22Ne30314.8.c.Backbending30514.9.Concluding Remarks30615.1.General Remarks30615.2.Connection between the Lifetime of a Compound State and Its Level Width30715.2.a.Relationship between the Lifetime of a Compound State and Its Level Width30715.2.b.Quantitative Relationship between the Level Width and the Lifetime of a Compound30915.2.c.Calculation of the Level Width - 6Li as an Example for a Decaying System31015.3.Time-Dependent Problems32016.1.General Remarks32016.2.Coulomb-Energy Effects in Mirror Levels32016.3.Reduced Widths and γ -Transition Probabilities32516.3.Reduced Widths of Nuclear Levels32516.3.Cyr-Transition Probabilities32516.3.Optical Resonances in Nuclear Reactions33316.4.Level Spectra of Neighbouring Nuclei33116.5.Optical Resonances in Reaction Channel33416.5.Optical Resonances in Reaction Channels33617.Nuclear Fission340	14.7.	Construction of Intrinsic Wave Functions for Quantitative Studies of Collective	
14.8.Specific Examples30214.8a. $\alpha + {}^{16}$ O Cluster States in 20 Ne30314.8b.Rotational States in 22 Ne30314.8c.Backbending30514.9.Concluding Remarks30615.1. Brief Discussion of Time-Dependent Problems 30615.2.Connection between the Lifetime of a Compound State and Its Level Width30715.2.Relationship between the Lifetime of a Compound State and Its Level Width30715.2.b.Quantitative Relationship between the Level Width and the Lifetime of a Compound Nuclear State30915.2.c.Calculation of the Level Width - 6 Li as an Example for a Decaying System31015.3.Time-Dependent Projection Equation with Time-Dependent Interaction31516.Qualitative Considerations of Some Nuclear Problems32016.1.General Remarks32016.2.Coulomb-Energy Effects in Mirror Levels32016.3.Reduced Widths of γ -Transition Probabilities32516.3.Reduced Widths of Nuclear Levels32516.3.Optical Resonances in Nuclear Reactions33116.4.Level Spectra of Neighbouring Nuclei33116.5.Optical Resonances in the Incoming Channel33416.5.Optical Resonances in Reaction Channels33617.Nuclear Fission340		States in Medium-Heavy and Heavy Nuclei	301
14.8a. $\alpha + {}^{16}$ O Cluster States in 20 Ne30214.8b.Rotational States in 22 Ne30314.8c.Backbending30514.9.Concluding Remarks30515.Brief Discussion of Time-Dependent Problems30615.1.General Remarks30615.2.Connection between the Lifetime of a Compound State and Its Level Width30715.2a.Relationship between Phase Shift and Time Delay30715.2b.Quantitative Relationship between the Level Width and the Lifetime of a Compound Nuclear State30915.2c.Calculation of the Level Width - 6 Li as an Example for a Decaying System31015.3.Time-Dependent Projection Equation with Time-Dependent Interaction31516.Qualitative Considerations of Some Nuclear Problems32016.1.General Remarks32016.2.Coulomb-Energy Effects in Mirror Levels32016.3.Reduced Widths of Nuclear Levels32516.3a.Reduced Widths of Nuclear Levels32516.3b. γ -Transition Probabilities32816.4.Level Spectra of Neighbouring Nuclei33116.5.Optical Resonances in Nuclear Reactions33316.5a.Optical Resonances in Reaction Channels33617.Nuclear Fission340	14.8.	Specific Examples	302
14.8b.Rotational States in 22Ne30314.8c.Backbending30514.9.Concluding Remarks30515.Brief Discussion of Time-Dependent Problems30615.1.General Remarks30615.2.Connection between the Lifetime of a Compound State and Its Level Width30715.2.a.Relationship between Phase Shift and Time Delay30715.2.b.Quantitative Relationship between the Level Width and the Lifetime of a Compound Nuclear State30915.2.c.Calculation of the Level Width - ⁶ Li as an Example for a Decaying System31015.3.Time-Dependent Projection Equation with Time-Dependent Interaction31516.Qualitative Considerations of Some Nuclear Problems32016.1.General Remarks32016.2.Coulomb-Energy Effects in Mirror Levels32016.3.Reduced Widths and γ-Transition Probabilities32516.3.Reduced Widths of Nuclear Levels32116.4.Level Spectra of Neighbouring Nuclei33116.5.Optical Resonances in Nuclear Reactions33316.5.4.Optical Resonances in Reaction Channels33617.Nuclear Fission340	14.8a.	α + ¹⁶ O Cluster States in ²⁰ Ne	302
14.8c. Backbending 305 14.9. Concluding Remarks 305 15. Brief Discussion of Time-Dependent Problems 306 15.1. General Remarks 306 15.2. Connection between the Lifetime of a Compound State and Its Level Width 307 15.2. Relationship between Phase Shift and Time Delay 307 15.2. Quantitative Relationship between the Level Width and the Lifetime of a Compound Nuclear State 309 15.2. Calculation of the Level Width - ⁶ Li as an Example for a Decaying System 310 15.3. Time-Dependent Projection Equation with Time-Dependent Interaction 315 16. Qualitative Considerations of Some Nuclear Problems 320 16.1. General Remarks 320 16.2. Coulomb-Energy Effects in Mirror Levels 320 16.3. Reduced Widths and γ-Transition Probabilities 325 16.3. Reduced Widths of Nuclear Levels 325 16.4. Level Spectra of Neighbouring Nuclei 331 16.5. Optical Resonances in Nuclear Reactions 333 16.5.4. Optical Resonances in Reaction Channels 336 16.5.	14.8b.	Rotational States in ²² Ne	303
14.9.Concluding Remarks30515.Brief Discussion of Time-Dependent Problems30615.1.General Remarks30615.2.Connection between the Lifetime of a Compound State and Its Level Width30715.2.a.Relationship between Phase Shift and Time Delay30715.2.b.Quantitative Relationship between the Level Width and the Lifetime of a Compound Nuclear State30915.2.c.Calculation of the Level Width - ⁶ Li as an Example for a Decaying System31015.3.Time-Dependent Projection Equation with Time-Dependent Interaction31516.Qualitative Considerations of Some Nuclear Problems32016.1.General Remarks32016.2.Coulomb-Energy Effects in Mirror Levels32516.3.Reduced Widths and γ -Transition Probabilities32516.3.Reduced Widths of Nuclear Levels32516.3.4.Level Spectra of Neighbouring Nuclei33116.5.0.Optical Resonances in Nuclear Reactions33316.5.0.Optical Resonances in Reaction Channels33617.Nuclear Fission340	14.8c.	Backbending	305
15.Brief Discussion of Time-Dependent Problems30615.1.General Remarks30615.2.Connection between the Lifetime of a Compound State and Its Level Width30715.2.a.Relationship between Phase Shift and Time Delay30715.2.b.Quantitative Relationship between the Level Width and the Lifetime of a Compound Nuclear State30915.2.c.Calculation of the Level Width - ⁶ Li as an Example for a Decaying System31015.3.Time-Dependent Projection Equation with Time-Dependent Interaction31516.Qualitative Considerations of Some Nuclear Problems32016.1.General Remarks32016.2.Coulomb-Energy Effects in Mirror Levels32016.3.Reduced Widths and γ-Transition Probabilities32516.3.Reduced Widths of Nuclear Levels32116.3.Optical Resonances in Nuclear Reactions33316.4.Level Spectra of Neighbouring Nuclei33116.5.Optical Resonances in the Incoming Channel33416.5.Nuclear Fission340	14.9.	Concluding Remarks	305
15.1.General Remarks30615.2.Connection between the Lifetime of a Compound State and Its Level Width30715.2.a.Relationship between Phase Shift and Time Delay30715.2.b.Quantitative Relationship between the Level Width and the Lifetime of a Compound Nuclear State30915.2.c.Calculation of the Level Width – 6Li as an Example for a Decaying System31015.3.Time-Dependent Projection Equation with Time-Dependent Interaction31516.Qualitative Considerations of Some Nuclear Problems32016.1.General Remarks32016.2.Coulomb-Energy Effects in Mirror Levels32016.3.Reduced Widths and γ-Transition Probabilities32516.3.Reduced Widths of Nuclear Levels32516.3.P-Transition Probabilities32816.4.Level Spectra of Neighbouring Nuclei33116.5.Optical Resonances in Nuclear Reactions33316.5.Optical Resonances in Reaction Channels34017.Nuclear Fission340	15.	Brief Discussion of Time-Dependent Problems	306
 15.2. Connection between the Lifetime of a Compound State and Its Level Width 307 15.2a. Relationship between Phase Shift and Time Delay 307 15.2b. Quantitative Relationship between the Level Width and the Lifetime of a Compound Nuclear State 309 15.2c. Calculation of the Level Width – ⁶Li as an Example for a Decaying System 310 15.3. Time-Dependent Projection Equation with Time-Dependent Interaction 315 16. Qualitative Considerations of Some Nuclear Problems 320 16.1. General Remarks 320 16.2. Coulomb-Energy Effects in Mirror Levels 320 16.3. Reduced Widths and γ-Transition Probabilities 325 16.3a. Reduced Widths of Nuclear Levels 325 16.3b. γ-Transition Probabilities 328 16.4. Level Spectra of Neighbouring Nuclei 331 16.5. Optical Resonances in Nuclear Reactions 333 16.5. Optical Resonances in Reaction Channel 334 17. Nuclear Fission 340 	15.1.	General Remarks	306
15.2a. Relationship between Phase Shift and Time Delay 307 15.2b. Quantitative Relationship between the Level Width and the Lifetime of a Compound Nuclear State 309 15.2c. Calculation of the Level Width – ⁶ Li as an Example for a Decaying System 310 15.3. Time-Dependent Projection Equation with Time-Dependent Interaction 315 16. Qualitative Considerations of Some Nuclear Problems 320 16.1. General Remarks 320 16.2. Coulomb-Energy Effects in Mirror Levels 320 16.3. Reduced Widths and γ-Transition Probabilities 325 16.3a. Reduced Widths of Nuclear Levels 325 16.3b. γ-Transition Probabilities 328 16.4. Level Spectra of Neighbouring Nuclei 331 16.5. Optical Resonances in Nuclear Reactions 333 16.5a. Optical Resonances in Reaction Channels 336 17. Nuclear Fission 340	15.2.	Connection between the Lifetime of a Compound State and Its Level Width	307
15.2b. Quantitative Relationship between the Level Width and the Lifetime of a Compound Nuclear State 309 15.2c. Calculation of the Level Width – ⁶ Li as an Example for a Decaying System 310 15.3. Time-Dependent Projection Equation with Time-Dependent Interaction 315 16. Qualitative Considerations of Some Nuclear Problems 320 16.1. General Remarks 320 16.2. Coulomb-Energy Effects in Mirror Levels 320 16.3. Reduced Widths and γ-Transition Probabilities 325 16.3. Reduced Widths of Nuclear Levels 325 16.3. Reduced Widths of Nuclear Levels 325 16.4. Level Spectra of Neighbouring Nuclei 331 16.5. Optical Resonances in Nuclear Reactions 333 16.5.a. Optical Resonances in Reaction Channels 336 17. Nuclear Fission 340	15.2a.	Relationship between Phase Shift and Time Delay	307
Nuclear State30915.2c.Calculation of the Level Width – ⁶ Li as an Example for a Decaying System31015.3.Time-Dependent Projection Equation with Time-Dependent Interaction31516.Qualitative Considerations of Some Nuclear Problems32016.1.General Remarks32016.2.Coulomb-Energy Effects in Mirror Levels32016.3.Reduced Widths and γ -Transition Probabilities32516.3.Reduced Widths of Nuclear Levels32516.3.Reduced Widths of Nuclear Levels32516.3.Potical Resonances in Nuclear Reactions33316.5.Optical Resonances in the Incoming Channel33416.5.Optical Resonances in Reaction Channels340	15.2b.	Quantitative Relationship between the Level Width and the Lifetime of a Compound	
15.2c.Calculation of the Level Width – ⁶ Li as an Example for a Decaying System31015.3.Time-Dependent Projection Equation with Time-Dependent Interaction31516.Qualitative Considerations of Some Nuclear Problems32016.1.General Remarks32016.2.Coulomb-Energy Effects in Mirror Levels32016.3.Reduced Widths and γ-Transition Probabilities32516.3.Reduced Widths of Nuclear Levels32516.3.Reduced Widths of Nuclear Levels32516.3.Potical Resonances in Nuclear Reactions33116.5.Optical Resonances in Nuclear Reactions33316.5.Optical Resonances in Reaction Channels33617.Nuclear Fission340		Nuclear State	309
15.3.Time-Dependent Projection Equation with Time-Dependent Interaction31516.Qualitative Considerations of Some Nuclear Problems32016.1.General Remarks32016.2.Coulomb-Energy Effects in Mirror Levels32016.3.Reduced Widths and γ -Transition Probabilities32516.3.Reduced Widths of Nuclear Levels32516.3.Reduced Widths of Nuclear Levels32516.3.Reduced Widths of Nuclear Levels32816.4.Level Spectra of Neighbouring Nuclei33116.5.Optical Resonances in Nuclear Reactions33316.5.a.Optical Resonances in the Incoming Channel33416.5.Optical Resonances in Reaction Channels34017.Nuclear Fission340	15.2c.	Calculation of the Level Width – ⁶ Li as an Example for a Decaying System	310
16.Qualitative Considerations of Some Nuclear Problems32016.1.General Remarks32016.2.Coulomb-Energy Effects in Mirror Levels32016.3.Reduced Widths and γ-Transition Probabilities32516.3.Reduced Widths of Nuclear Levels32516.3.Reduced Widths of Nuclear Levels32516.3.b.γ-Transition Probabilities32816.4.Level Spectra of Neighbouring Nuclei33116.5.Optical Resonances in Nuclear Reactions33316.5.a.Optical Resonances in the Incoming Channel33416.5b.Optical Resonances in Reaction Channels33617.Nuclear Fission340	15.3.	Time-Dependent Projection Equation with Time-Dependent Interaction	315
16.1.General Remarks32016.2.Coulomb-Energy Effects in Mirror Levels32016.3.Reduced Widths and γ -Transition Probabilities32516.3.Reduced Widths of Nuclear Levels32516.3. γ -Transition Probabilities32816.3. γ -Transition Probabilities32816.4.Level Spectra of Neighbouring Nuclei33116.5.Optical Resonances in Nuclear Reactions33316.5.a.Optical Resonances in the Incoming Channel33416.5.Optical Resonances in Reaction Channels33617.Nuclear Fission340	16.	Qualitative Considerations of Some Nuclear Problems	320
16.2.Coulomb-Energy Effects in Mirror Levels32016.3.Reduced Widths and γ-Transition Probabilities32516.3a.Reduced Widths of Nuclear Levels32516.3b.γ-Transition Probabilities32816.4.Level Spectra of Neighbouring Nuclei33116.5.Optical Resonances in Nuclear Reactions33316.5a.Optical Resonances in the Incoming Channel33416.5b.Optical Resonances in Reaction Channels33617.Nuclear Fission340	16.1.	General Remarks	320
16.3.Reduced Widths and γ -Transition Probabilities32516.3a.Reduced Widths of Nuclear Levels32516.3b. γ -Transition Probabilities32816.4.Level Spectra of Neighbouring Nuclei33116.5.Optical Resonances in Nuclear Reactions33316.5a.Optical Resonances in the Incoming Channel33416.5b.Optical Resonances in Reaction Channels33617.Nuclear Fission340	16.2.	Coulomb-Energy Effects in Mirror Levels	320
16.3a. Reduced Widths of Nuclear Levels32516.3b. γ-Transition Probabilities32816.4. Level Spectra of Neighbouring Nuclei33116.5. Optical Resonances in Nuclear Reactions33316.5a. Optical Resonances in the Incoming Channel33416.5b. Optical Resonances in Reaction Channels33617. Nuclear Fission340	16.3.	Reduced Widths and γ -Transition Probabilities	325
16.3b.γ-Transition Probabilities32816.4.Level Spectra of Neighbouring Nuclei33116.5.Optical Resonances in Nuclear Reactions33316.5.a.Optical Resonances in the Incoming Channel33416.5b.Optical Resonances in Reaction Channels33617.Nuclear Fission340	16.3a.	Reduced Widths of Nuclear Levels	325
16.4.Level Spectra of Neighbouring Nuclei33116.5.Optical Resonances in Nuclear Reactions33316.5a.Optical Resonances in the Incoming Channel33416.5b.Optical Resonances in Reaction Channels33617.Nuclear Fission340	16.3b.	γ -Transition Probabilities	328
16.5.Optical Resonances in Nuclear Reactions33316.5a.Optical Resonances in the Incoming Channel33416.5b.Optical Resonances in Reaction Channels33617.Nuclear Fission340	16.4.	Level Spectra of Neighbouring Nuclei	331
16.5a.Optical Resonances in the Incoming Channel33416.5b.Optical Resonances in Reaction Channels33617.Nuclear Fission340	16.5.	Optical Resonances in Nuclear Reactions	333
16.5b. Optical Resonances in Reaction Channels33617. Nuclear Fission340	16.5a.	Optical Resonances in the Incoming Channel	334
17. Nuclear Fission340	16.5b.	Optical Resonances in Reaction Channels	336
	17.	Nuclear Fission	340
17.1. General Remarks 340	17.1.	General Remarks	340
17.2. Substructure Effects in Fission Processes 341	17.2.	Substructure Effects in Fission Processes	341
17.3. Mass Distribution of Fission Fragments 347		Mass Distribution of Fission Fragments	347
17.4. Deformation Energy of Fissioning Nucleus 349	17.3.	mass Distribution of Lission Lingingits	

17.4a.	Dynamical Consideration of the Fission Process	349
17.4Ъ.	Calculation of the Deformation Energy – Strutinsky Prescription	352
17.4c.	Calculation of the Deformation Energy-Cluster Prescription	357
17.4d.	Discussion	362
18.	Conclusion	365
Appendix A – Cluster Hamiltonians and Jacobi Coordinates		368
Appendix B – Designation of Oscillator States Appendix C – Demonstration of the Projection Technique Appendix D – Connection with Conventional Direct-Reaction Theory		371
		371
		374
References		377
Index		388