CONTENTS

	PART VI. A SURVEY OF NUCLEAR REACTIONS	
Philip Morrison		
1.	The Conservation Laws A. Application of Energy-Momentum Conservation. B. Conservation of Angular Momenta.	1
2.	The Data of Nuclear Reactions A. Yields and Cross Sections. B. The Measurement of Yields and Cross Sections. C. Types of Reactions: A Guide to the Literature.	15
3.	The Nuclear Model A. Qualitative Account of the Model. B. Calculation of Level Densities.	25
4.	Nuclear Level Widths A. Level Widths and Reaction Cross Sections: Statistical Relations. B. Calculation of Level Widths.	45
5.	The Course of Nuclear Reactions A. The Steps of the Reaction. B. The Contact Cross Section. C. The Disintegration of Compound States.	54
6.	The Dispersion Theory: Resonance Reactions A. The One-Body Model and Its Difficulties. B. The Dispersion Theory for an Isolated Resonance. C. The Generalized Theory of Dispersion: Many Levels and Many Decay Modes. D. Statistical Estimates.	64
7.	Some Typical Nuclear Reactions A. Resonance: The Region of Dispersion Theory. B. Reactions without Marked Resonance.	83
8.	The Deuteron as a Projectile A. The Oppenheimer-Phillips Reaction: Low-Energy Stripping. B. Strip- ping Reactions at Higher Energy.	110
9.	Radiative Processes in Nuclear Reactions A. The Multipole Classification. B. Calculation of Radiation Widths. C. Photo-Induced Reactions.	114
10.	Nuclear Fission A. The Energetics of Fission. B. The Products of Fission. C. Fission Cross Sections.	123
11.	Nuclear Reactions at High Energy A. The Nuclear Cascade. B. Correlations among Nucleons. C. The Op- tical Model for the Scattering of Nucleons. D. The Processes of Nuclear De-excitation at High Energy. E. Mesons: Virtual and Real.	141

Contents

PART VII. THE NEUTRON

Bernard T. Feld

1. Properties and Fundamental Interactions	209
A. Discovery. B. Properties. C. Fundamental Interactions.	
2. Interaction with Nuclei	247
A. Introduction. B. General Considerations. C. Types of Neutron Re- actions.	
3. Sources and Detectors: Neutron Spectroscopy	357
A. Introduction. B. Neutron Sources. C. Neutron Detectors. D. Slow- Neutron Spectroscopy. E. The Calibration of Neutron Sources.	
4. The Interaction of Neutrons with Matter in Bulk	460
A. Introduction. B. Diffusion of Monoenergetic Neutrons. C. The Slowing-Down Process. D. The Nuclear Chain Reaction.	
5. Coherent Scattering Phenomena with Slow Neutrons	508
A. Introduction. B. Neutron Diffraction and the Structure of Matter.	
C. Neutron Diffraction and the Determination of Nuclear Scattering	
Amphiludes. D. Magnetic Scattering and Neutron 1 Dianzation.	
Author Index	
Subject Index	

viii