Contents

-	^
Pre	tace
1 / 6	ucc

1.	GENERAL FORMALISMS AND THEOREMS IN SCATTERING THEORY	1
	1.1. Introduction	1
	1.2. Unitarity	3
	1.3. Threshold branch points	3 7 9
	1.4. Threshold cusps	9
	1.5. Effective-range expansion	12
	1.6. Resonances	13
	1.7. Multi-channel formalism	15
2.	CAUSALITY, ANALYTICITY AND DISPERSION RELATIONS	19
	2.1. Some mathematical preliminaries	19
	2.2. The connection between causality and analyticity	21
	2.3. Analyticity of amplitudes in quantum field theory	23
	2.4. Derivation of the basic dispersion relation	24
	2.5. Subtractions	26
3.	RELATIVISTIC KINEMATICS, CROSSING AND THE MANDELSTAM	
	REPRESENTATION	30
	3.1. Relativistic kinematics	30
	3.2. Crossing	34
	3.3. One-particle exchange model	38
	3.4. Crossing relations	40
	3.5. The left-hand cut in fixed-t dispersion relations	43
	3.6. The Mandelstam representation	45
	3.7. Threshold behaviour	47
4.	CONSTRAINTS ON HIGH-ENERGY BEHAVIOUR	49
	4.1. Heuristic derivation of some bounds	49
	4.2. Rigorous results from field theory	51
	4.3. The Froissart bound	52
	4.4. Existence of twice-subtracted dispersion relations	54
	4.5. Width of the forward diffraction peak	56
	4.6. Miscellaneous bounds	58
	4.7. The Pomeranchuk theorem	60
	4.8. Phase relations	62
5.	FIXED- t DISPERSION RELATIONS FOR πN SCATTERING	65
	5.1. Lorentz-invariant description of πN scattering	65

x Contents

	5.2. Crossing and analyticity properties of the amplitudes	67
	5.3. Twice-subtracted forward dispersion relations	69
	5.4. Alternative forms of the dispersion relations	72
	5.5. Linear extrapolation methods	78
	5.6. Dispersion relations for the B amplitudes	80
	5.7. Computational problems in the analysis of dispersion relations	83
6.	FURTHER APPLICATIONS OF DISPERSION RELATIONS	88
-1-1	6.1. Dispersion relations for KN scattering	88
	6.2. Phenomenological analysis of forward KN dispersion relations	92
	6.3. Dispersion relations for NN scattering	97
	6.4. Discrepancy functions	100
	6.5. Backward dispersion relations	102
	6.6. Dispersion relations for electromagnetic form factors	106
7	MODIFIED DISPERSION RELATIONS	110
1.		110
	7.1. Inverse dispersion relations	112
	7.2. Weighted dispersion relations7.3. Dispersion relations for the inverse amplitude	115
	7.3. Dispersion relations for the inverse amplitude 7.4. Dispersion relations for other functions of amplitudes	118
		122
	7.5. Derivative dispersion relations	122
8.	REGGE THEORY	126
	8.1. The Sommerfeld-Watson transformation	126
	8.2. Regge poles in potential scattering	130
	8.3. Regge poles in high-energy scattering	133
	8.4. Basic properties of Regge poles	135
	8.5. Simple tests of the Regge pole model	138
	8.6. The Regge pole model for πN and KN scattering	140
	8.7. Regge trajectories and residues	144
	8.8. Further development of the Regge model	148
9.	SUPERCONVERGENCE RELATIONS	152
	9.1. Superconvergent amplitudes	152
	9.2. Sum rules from Regge asymptotic behaviour	154
	9.3. Sum rules for factorised amplitudes	158
	9.4. Sum rules from asymptotic symmetry requirements	160
10). FINITE ENERGY SUM RULES	162
	10.1. Derivation of the sum rules	162
	10.2. Applications to strong and electromagnetic processes	165
	10.3 Finite energy sum rules and duality	168

	Contents	ΧI
11.	MODIFIED SUM RULES	171
	11.1. Continuous moment sum rules	171
	11.2. Miscellaneous sum rules	174
	11.3. Modified sum rules as a superposition of finite energy sum rules	178
	11.4. An alternative derivation of the sum rules	183
12.	EXTRAPOLATION OF DATA BY ANALYTIC CONTINUATION TECHNIQUES	187
	12.1. Physical motivation	187
	12.2. Classification of analytic continuations	188
	12.3. The rate of convergence of power series expansions	192
	12.4. Conformal mapping techniques	196
IND	EX	201