•

CONTENTS

INTRODUCTORY LECTURES

Lecture 1: Computer Methods in Radiation Protection as Viewed by a User	9
Lecture 2: The Physics of Radiation Transport 1 Keran O'Brien	.7
LOW ENERGY NEUTRON AND GAMMA-RAY PROGRAMS AND THEIR APPLICATION	IS
Lecture 3: The Methods and Applications of Dis- crete Ordinates in Low Energy Neutron- Photon Transport (ANISN, DOT) Part I: Methods	59
Lecture 4: The Methods and Applications of Monte Carlo in Low Energy (≤ 20 MeV) Neutron- Photon Transport (MORSE) Part I: Methods	7
Lecture 5: The Methods and Applications of Dis- crete Ordinates in Low Energy Neutron- Photon Transport (ANISN, DOT) Part II: Applications	97
Lecture 6: The Methods and Applications of Monte Carlo in Low Energy (≤ 20 MeV) Neutron- Photon Transport (MORSE) Part II: Applications	9

	7: The European Shielding Information Service - ESIS	121
	8: Cross Section Processing Codes and Data Bases (AMPX)	123
	9: Radiation Shielding Information Center and Biomedical Computing Technology Information Center	125
	10: Approximate Methods in Reactor Shielding Calculations	127
ELECTRO	OMAGNETIC CASCADE SHOWER PROGRAMS AND THEIR APPLICATION	IS
	<pre>11: The Physics of Electromagnetic Cascade</pre>	141
	12: Solution of the Electromagnetic Cascade Shower Problem by Analog Monte Carlo Methods - EGS	173
	<pre>13: Some Examples for the Application of the Monte Carlo Code EGS</pre>	197
	<pre>14: Calculation of the Average Properties of Electromagnetic Cascades at High Energies (AEGIS)</pre>	211
	15: Electron Dosimetry Using Monte Carlo Techniques	223
	l6: Application of EGS to Detector Design in High Energy Physics lter R. Nelson	239
	17: Application of EGS and ETRAN to Prob- lems in Medical Physics and Dosimetry lter R. Nelson	253

HADRONIC CASCADE PROGRAMS AND THEIR APPLICATIONS

Lecture 18: Introduction to Hadronic Cascades Tony W. Armstrong	269
Lecture 19: Particle Production Models, Sampling High-Energy Multiparticle Events from Inclusive Single- Particle DistributionsJ. Ranft	279
Lecture 20: The Intranuclear-Cascade- Evaporation Model	311
Lecture 21: Calculation of the Average Properties of Hadronic Cascades at High Energies (CASIM)A. Van Ginneken	323
Lecture 22: The FLUKA and KASPRO Hadronic Cascade Codes	339
Lecture 23: The HETC Hadronic Cascade Code Tony W. Armstrong	373
UNFOLDING METHODS AND SPECTRUM ANALYSIS	
Lecture 24: Unfolding Techniques for Activation Detector Analysis J. T. Routti and J. V. Sandberg	389
Lecture 25: Bremsstrahlung Spectrum Analysis by Activation Method (LYRA, DIBRE, REFUM)	409
Lecture 26: Application of Activation- Spectrum Analysis Method to Shield- ing (TAURUS, LYRA, DIBRE, SAND-II) Takashi Nakamura	443
Lecture 27: Activation Detectors and Their Gamma Spectrum Analysis	479

xi

-

515

Monte Carlo Calculation of Exposure Rates 501 Laszlo Koblinger Integral Equation for Radiation Transport -503 V. Sundara Raman Thermal Effects Induced by High Energy Protons in Target and Absorber 507 P. Sievers 511 Graham R. Stevenson 513 Participants

INVITED PRESENTATIONS FROM STUDENTS AND SUMMARY LECTURE