Gruppo fotografico d	dei	partecipanti	\mathbf{al}	Corso
----------------------	-----	--------------	---------------	-------

fuori testo

V. N. BAIER - Radiative polarization of electrons in storage rings.

1.	Introduction	pag.	1
2.	Radiative spin-flip transition	»	2
	2'1. Method of approach	*	2
	2'2. Spin-flip transition	»	8
3.	Kinetics of radiative polarization	*	11
	3'1. Equation for the spin vector involving damping	»	11
	3 [•] 2. Solution of the kinetic equation	*	16
4.	Depolarization effects	*	20
	4'1. Elementary analysis of the dynamic depolarization	»	21
	4'2. Dynamic depolarization	»	24
	4'3. Stochastic depolarization	»	33
	4'4. Other depolarization effects	*	35
5.	Measurements of electron polarization	»	35
	5'1. Measurements of polarization in the experiments with interaction of high-energy particles.	»	36
	5'2. Inner scattering effects (« Touschek effect ») and polar-		•
	ization measurement	»	38
	5'3. Measurements of polarization by Compton scattering	*	41
	5'4. Scattering on polarized electron target and measurement		49
	of polarization \dots	»	42
	55. Some different methods	»	43
AF	PENDIX A – Calculation of $\langle t_0 \operatorname{Re} T_2 t_0 \rangle$	*	44
AF	PENDIX B – Equation for the spin motion in the external field	»	45

E.	CELEGHINI – Resonances from electron-positron colliding beams.	
	1. Introduction	pag. 50
	2. References frames	» 51
	3. The vertex $r \rightarrow s+t$	» 53
	4. The production process	» 55
	5. General chain of resonances	» 56
	6. Description of e^+ and e^- polarization	» 57
	7. Meson and baryon vertices	» 58
	8. General distributions in colliding beams	» 61
	9. Speculations on the magnitude of the cross-sections	» 62
E.	ETIM – Theory and applications of radiative corrections.	
	1. Introduction	» 68
	2. The infra-red divergence and the Bloch-Nordsieck theorem	» 68
	3. Distribution function $dP(\omega)$ of energy loss	» 71
	4. Normalization of $dP(\omega)$	» 73
	5. $dP(\omega)$ for resonant processes	» 75
	6. Conclusion	» 78
R.	GATTO – Theory of e^+-e^- annihilation at high energy. (Sum rules, asymptotic behaviours, algebra of compound fields).	
		» 80
	1	» 00
	2	° 82 ∖\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	<i>A</i>	₩ 84
	τ	» 85
	PART I – Equal-time commutators	» 88
	1 Des 14 instrumentations and Calmin and the second	
	1. Equal-time commutators and Schwinger terms	* 00 00
	11	» 88
	12	» 88
		» 89
	2. The spectral representation	» 90
	21	» 90
	$2 \cdot 2 \cdot \ldots \cdot $	» 91
	2.3	» 92
	$2^{\cdot}4.$	» 92

3.	The ε -limiting procedure	pag.	92
	3.1	*	92
	3'2	»	93
	3'3	»	94
4.	Schwinger terms and seagulls	»	94
	4'1	»	94
	4.2	*	96
	4.3	*	97
	4.4	»	97
$\mathbf{P}_{\mathbf{A}}$	ART II – Sum rules	»	98
5	Spectral representations for currents and Schwinger terms	»	98
0.	5'1	**	98
	5'2	»	99
	5'3	*	99
6	Higher moment sum rules	»	102
0.	6'1	*	102
	6'2	»	103
	6'3	*	104
$\mathbf{P}_{\mathbf{r}}$	ART III - e ⁺ -e ⁻ annihilation	»	105
7.	Application of the sum rules	*	105
	71	»	105
	7.2	*	106
	7 [•] 3	*	106
	7.4	*	107
	7.5	*	108
	7.6	»	109
8.	Asymptotic behaviour of the cross-section for annihilation		
	into hadrons. Harmonic corrections to the photon propagator	*	110
	81	»	110
	82	*	110
9.	Pion form factor from elastic unitarity.	»	112
\mathbf{P}_{A}	ART IV – Field algebra	*	115
10.	Field-current identity	»	115
	10'1	*	115
	10'2	*	116
	10'3	*	116
	10'4	*	117
	10'5	»	118

11.	The ρ - γ coupling in an alternative form	g. 118
	11 ¹ 1	118
	11 [•] 2	119
	11 [•] 3	119
12.	Renormalization for the neutral $\rho\text{-meson}$	121
	12 `1	121
	12 [•] 2	122
13.	Spectral sum rules from field-current identity »	123
	13 [•] 1	123
	13'2	124
	13'3	125
	13 [•] 4	125
14.	Free gauge fields	126
15.	Algebra of fields »	128
	15 [•] 1	128
	15'2	128
16.	Limiting cases of field algebra »	131
	16'1	131
	16 [•] 2	132
	16'3	135
17.	The vanishing of the wave-function renormalization constant »	137
	17 [•] 1	137
	17 [•] 2	139

J. HAISSINSKI – The Orsay electron-positron storage ring (status report).

1.	Magnetic structure of ACO. Choice of the «operating point »	*	141
2.	Beam energy	»	145
3.	Geometric structure of the bunches	»	148
4.	Interaction rates	*	149
5.	Prospects for $\mathscr L$	»	150
	51. Increase of σ_x	»	151
	5'2. Decrease of β^*	*	151
	5'3. Beam separation and/or crossing at an angle	*	151
6.	Injection routine and filling time	»	152
7.	Beam lifetime	»	153
8.	Spill-out of stored particles	»	154

VIII

J.	HAISSINSKI – High-energy physics with the Orsay e^+-e^- storage ring.		
	1. Introduction	pag.	156
	2. Normalization of cross-section measurements	*	157
	3. The experimental set-up	*	161
	4. Quantum electrodynamics	*	162
	4'1. Muon pairs	»	162
	4°2. Bhabha scattering	»	162
	5. Strongly interacting final states. Parametrization of the		
	cross-sections	*	164
	51. One-photon approximation and form factors	*	164
	5'2. Parametrizations based on the vector-meson dominance		
	$model (VDM) \dots \dots$	*	165
	5.2.1. The vector dominance hypothesis \ldots \ldots	»	165
	5.2.3 Parametrization of the form factors	» »	167
	$5^{\circ}2.4$. Value of the cross-section at the peak of the	"	10.
	resonance	*	168
	5'3. Finite-width corrections to the pion form factor	»	169
	5'4. Interference effects	*	171
	6. Description of the experiments	»	171
	6'1. Final-state identification	*	172
	6'2. Background	»	173
	6'3. Radiative corrections	*	174
	7. Comparison of the experimental results with VDM predictions	»	174
	7'1. Experimental results	»	174
	7'2. Comparison with theoretical predictions	*	176
	7'3. $\omega \rho$ interference	»	180
	8. Conclusion	*	181
А.	N. LEBEDEV – On the bunch lengthening effect in storage rings.		
	1. Introduction	*	184
	2. Beam dynamics	*	185
	3. Straight vacuum chamber impedance.	»	189
	4. Instability increment and beam length	*	190
G.	K. O'NEILL – The SU_6 quark model.		
	1	»	194
	2	»	198
	2'1. The quark hypothesis	*	198
	2'2. The SU_6 group \ldots \ldots \ldots \ldots \ldots	*	199

		2'3. Puzzles				pag.	200
		2 [•] 4. The constru	tion of baryons by th	e quark	model	*	200
	3.					*	202
		3'1. Symmetry.				»	203
		3 [•] 2. 10 and 8 .				*	204
	4.					*	205
		4'1. Direct conse	quences of the quark i	model .		*	205
		4'2. Mesons in &	\tilde{U}_6			*	205
		4'3. The generat	ng operators of SU_6 .			*	207
	5.					»	208
		5'1. Three kinds	of symmetry			*	209
		5'2. From 216 t	56			*	209
	6.					*	210
	1010	6'1 Symmetrizir	the baryon octet-n	ucleon	construction	*	210
	7	o it symmetrian	, the surjou cotor i	uoroon.		**	214
	••	7'1 The nucleon	magnetic moment rati	 io		"	215
	0	11. The nucleon	magneoic moment radi	10		"	210
	0.	ori Tradman goat	aning haan magaag				916
		81. Hadron scat	ering; boson masses	• • • •		"	210
C.	P# ste	CLLEGRINI – Col prage rings.	erent instabilities ir	ı electr	on-positron		
	In	troduction				*	221
	1.					*	221
	2 .					*	224
	3.					*	227
	4.					*	232
	5.	• • • • • • • •				*	233
	6.					*	240
C.	BA CU M.	ACCI, G. PENSO, CCINI, G. P. M SPINETTI – Read	B. SALVINI, R. BALDI URTAS, C. PELLEGRIN tion $e^+e^- \rightarrow \pi^0 + \gamma$ and $\widehat{mr'}$ mixing angles	INI-CELI VI, A. $]$ $e^+e^- \rightarrow \gamma$	o, C. MEN- REALE and $\eta + \gamma$: meas-	ĸ	944
	ur	ement of $\omega \varphi$ and	$\eta\eta$ mixing angles.			*	244
	1.	The cross-section	for the graphs of Fig.	1		*	245
	2.	Some previsions	f SU_3 for graph 2. The second sec	he mixir	ng angle	*	246
	3.	The previsions o	the quark model. T	he mixi	ing angle θ_v	*	248
	4.	The Frascati expe	rimental program for th	ie π ⁰ γ, η·	y final states	*	251
			* 0				

4'2. The distinction between different reactions . . .

*

253

> . .

	4'3.	Events	with	three	eγ's	detee	cted	d.				•		•	•	÷	•		pag.	254
	4'4.	Events	with	2γ 's	dete	cted.	•						•	•	•		•		*	254
	4'5.	Countin	ig rat	es fo	r e+e	$- \rightarrow \pi'$	٥γ	(ηγ)		•		•	•	•	•	÷	•		*	254
5.	Othe	r theore	etical	prev	ision	s. Th	ne	vec	to	r-d	on	nin	ar	ice	ı	no	de	1.		
	Othe	er reason	s of	intere	est fo	or pro	oces	sses	(1	.) :	an	d	(2)	•	•	•		•	*	255

M. SANDS – The physics of electron storage rings. An introduction.

PART 1 An introductory overview >> 258 1-1. Opening remarks >> 258 1-2. Basic processes >> 259 1-3. Collective effects >> 261 1-4. Two-beam effects >> 262 1-5. Luminosity >> 263 1-6. Beam density luminosity >> 263 1-6. Beam density luminosity >> 263 1-7. Maximum luminosity >> 268 1-8. Effective interaction area >> 271 PART 2 The betatron oscillations >> 273 2-1. Co-ordinates of the motion >> 273 2-2. The guide field >> 274 2-3. Equations of motion >> 277 2-4. Separation of the radial motion >> 282 2-5. Betatron trajectories >> 282 2-6. Pseudoharmonic betatron oscillations >> 282 2-7. The betatron number * >> 291 2-8. An approximate description of betatron oscillations >> 294 2-9. Nature of the betatron function >> 302 2-11. Gradient errors >> 302 2-12. Beam-beam interaction; tune shift >> 309 2-13. Low-beta insert >> 319 3-1. Off-energy orbits >> 319	Most commonly used symbols »	257
1-1. Opening remarks > 258 1-2. Basic processes > 259 1-3. Collective effects > 261 1-4. Two-beam effects > 262 1-5. Luminosity > 263 1-6. Beam density luminosity > 263 1-6. Beam density luminosity > 263 1-7. Maximum luminosity > 263 1-8. Effective interaction area > 267 1-7. Maximum luminosity > 268 1-8. Effective interaction area > 271 PART 2 The betatron oscillations > 273 2 - 1. Co-ordinates of the motion > 273 2 - 2. The guide field > 274 2 - 3. Equations of motion > 277 2 - 4. Separation of the radial motion > 281 2 - 5. Betatron trajectories > 282 2 - 6. Pseudoharmonic betatron oscillations > 282 2 - 7. The betatron number * > 291 2 - 8. An approximate description of betatron oscillations > 294 2 - 9. Nature of the	PART 1 An introductory overview	258
1-2. Basic processes >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1-1. Opening remarks	258
1-3. Collective effects >> 261 1-4. Two-beam effects >> 262 1-5. Luminosity >> 263 1-6. Beam density luminosity >> 263 1-7. Maximum luminosity >> 267 1-7. Maximum luminosity >> 268 1-8. Effective interaction area >> 271 PART 2 The betatron oscillations >> 273 2- 1. Co-ordinates of the motion >> 273 2- 2. The guide field >> 274 2- 3. Equations of motion >> 277 2- 4. Separation of the radial motion >> 281 2- 5. Betatron trajectories >> 282 2- 6. Pseudoharmonic betatron oscillations >> 286 2- 7. The betatron number \$\$\nu\$ >> 291 2- 8. An approximate description of betatron oscillations >> 296 2-10. Disturbed closed orbits >> 302 2-11. Gradient errors >> 306 2-12. Beam-beam interaction; tune shift >> 309 2-13. Low-beta insert >> 315	1-2. Basic processes	259
1-4. Two-beam effects > 262 1-5. Luminosity > 263 1-6. Beam density luminosity > 267 1-7. Maximum luminosity > 268 1-8. Effective interaction area > 271 PART 2 The betatron oscillations > 273 2- 1. Co-ordinates of the motion > 273 2- 2. The guide field > 274 2- 3. Equations of motion > 277 2- 4. Separation of the radial motion > 282 2- 5. Betatron trajectories > 282 2- 6. Pseudoharmonic betatron oscillations > 286 2- 7. The betatron number \$\number\$ > 286 2- 8. An approximate description of betatron oscillations > 294 2- 9. Nature of the betatron function > 296 2-10. Disturbed closed orbits > 302 2-11. Gradient errors > 302 2-12. Beam-beam interaction; tune shift > 309 2-13. Low-beta insert > 319 3-1. Off-energy orbits > 319 3-2. Orbit length: dilatation factor > 322	1-3. Collective effects	261
1-5. Luminosity > 263 1-6. Beam density luminosity > 267 1-7. Maximum luminosity > 268 1-8. Effective interaction area > 271 PART 2 The betatron oscillations > 273 2- 1. Co-ordinates of the motion > 273 2- 2. The guide field. > 274 2- 3. Equations of motion > 277 2- 4. Separation of the radial motion > 281 2- 5. Betatron trajectories > 282 2- 6. Pseudoharmonic betatron oscillations > 282 2- 7. The betatron number ν > 291 2- 8. An approximate description of betatron oscillations > 294 2- 9. Nature of the betatron function > > 302 2-11. Gradient errors > > 306 2-12. Beam-beam interaction; tune shift > > 309 2-13. Low-beta insert > > 319 3-1. Off-energy orbits > > 319 3-2. Orbit length: dilatation factor > > > 322 <td>1-4. Two-beam effects</td> <td>262</td>	1-4. Two-beam effects	262
1-6. Beam density luminosity. >> 267 1-7. Maximum luminosity >> 268 1-8. Effective interaction area >> 271 PART 2 The betatron oscillations >> 273 2- 1. Co-ordinates of the motion >> 273 2- 2. The guide field. >> 274 2- 3. Equations of motion >> 277 2- 4. Separation of the radial motion >> 281 2- 5. Betatron trajectories >> 282 2- 6. Pseudoharmonic betatron oscillations >> 286 2- 7. The betatron number ν >> 291 2- 8. An approximate description of betatron oscillations >> 296 2-10. Disturbed closed orbits >> 302 2-11. Gradient errors. >> 302 2-12. Beam-beam interaction; tune shift >> 309 2-13. Low-beta insert >> 319 3-1. Off-energy orbits >> 319 3-2. Orbit length: dilatation factor >> 322	1-5. Luminosity	263
1-7. Maximum luminosity>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1-6. Beam density luminosity	267
1-8. Effective interaction area >> 271 PART 2 The betatron oscillations >> 273 2- 1. Co-ordinates of the motion >> 273 2- 2. The guide field. >> 274 2- 3. Equations of motion >> 277 2- 4. Separation of the radial motion >> 281 2- 5. Betatron trajectories >> 282 2- 6. Pseudoharmonic betatron oscillations >> 286 2- 7. The betatron number ν >> 291 2- 8. An approximate description of betatron oscillations >> 294 2- 9. Nature of the betatron function >> 302 2-11. Gradient errors. >> 309 2-12. Beam-beam interaction; tune shift >> 309 2-13. Low-beta insert >> 319 3-1. Off-energy orbits >> >> 319 3-2. Orbit length: dilatation factor >> 322	1-7. Maximum luminosity	268
PART 2 The betatron oscillations	1-8. Effective interaction area	271
2- 1. Co-ordinates of the motion >> 273 2- 2. The guide field. >> 274 2- 3. Equations of motion >> 277 2- 4. Separation of the radial motion >> 281 2- 5. Betatron trajectories >> 282 2- 6. Pseudoharmonic betatron oscillations >> 282 2- 7. The betatron number ν >> 291 2- 8. An approximate description of betatron oscillations >> 294 2- 9. Nature of the betatron function >> >> 2-10. Disturbed closed orbits >> >> 302 2-11. Gradient errors >> >> >> >> 2-13. Low-beta insert >>	PART 2. – The betatron oscillations	273
2- 2. The guide field. >> 274 2- 3. Equations of motion . >> 277 2- 4. Separation of the radial motion . >> 281 2- 5. Betatron trajectories . >> 282 2- 6. Pseudoharmonic betatron oscillations . >> 286 2- 7. The betatron number v . >> 291 2- 8. An approximate description of betatron oscillations . >> 294 2- 9. Nature of the betatron function . >> 302 2-10. Disturbed closed orbits . >> 302 2-11. Gradient errors. >> 306 2-12. Beam-beam interaction; tune shift. >> 309 2-13. Low-beta insert >> 319 3-1. Off-energy orbits . >> 319 3-2. Orbit length: dilatation factor . >> 322	2-1. Co-ordinates of the motion	273
2- 3. Equations of motion	2-2. The guide field	274
2-4. Separation of the radial motion >> 281 2-5. Betatron trajectories >> 282 2-6. Pseudoharmonic betatron oscillations >> 286 2-7. The betatron number v >> 291 2-8. An approximate description of betatron oscillations >> 294 2-9. Nature of the betatron function >> 296 2-10. Disturbed closed orbits >> 302 2-11. Gradient errors >> 306 2-12. Beam-beam interaction; tune shift >> 309 2-13. Low-beta insert >> 315 PART 3 Energy oscillations >> 319 3-1. Off-energy orbits >> 319 3-2. Orbit length: dilatation factor >> 322	2-3. Equations of motion	277
2- 5. Betatron trajectories >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	2-4. Separation of the radial motion	281
2- 6. Pseudoharmonic betatron oscillations. > 286 2- 7. The betatron number v. > 291 2- 8. An approximate description of betatron oscillations. > 294 2- 9. Nature of the betatron function. > 296 2-10. Disturbed closed orbits. > 302 2-11. Gradient errors. > 306 2-12. Beam-beam interaction; tune shift. > 309 2-13. Low-beta insert > 319 3-1. Off-energy orbits > 319 3-2. Orbit length: dilatation factor > 322	2-5. Betatron trajectories	282
2- 7. The betatron number v » 291 2- 8. An approximate description of betatron oscillations » 294 2- 9. Nature of the betatron function » 296 2-10. Disturbed closed orbits » 302 2-11. Gradient errors » 306 2-12. Beam-beam interaction; tune shift » 309 2-13. Low-beta insert » 315 PART 3 Energy oscillations » 319 3-1. Off-energy orbits » 319 3-2. Orbit length: dilatation factor » 322	2-6. Pseudoharmonic betatron oscillations.	286
2-8. An approximate description of betatron oscillations >> 294 2-9. Nature of the betatron function >> 296 2-10. Disturbed closed orbits >> 302 2-11. Gradient errors >> >> 2-12. Beam-beam interaction; tune shift >> >> 2-13. Low-beta insert >> >> 2-14. Off-energy orbits >> >> 3-1. Off-energy orbits >> >> 3-2. Orbit length: dilatation factor >> >>	2-7. The betatron number ν	291
2-9. Nature of the betatron function	2-8. An approximate description of betatron oscillations	294
2-10. Disturbed closed orbits 302 2-11. Gradient errors. 306 2-12. Beam-beam interaction; tune shift. 309 2-13. Low-beta insert 315 PART 3 Energy oscillations. 319 3-1. Off-energy orbits 319 3-2. Orbit length: dilatation factor 322	2-9. Nature of the betatron function	296
2-11. Gradient errors. >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	2-10. Disturbed closed orbits	302
2-12. Beam-beam interaction; tune shift. > 309 2-13. Low-beta insert > > 315 PART 3 Energy oscillations. > > > 319 3-1. Off-energy orbits > > > 319 3-2. Orbit length: dilatation factor > > > 322	2-11. Gradient errors	306
2-13. Low-beta insert	2-12. Beam-beam interaction; tune shift	309
PART 3 Energy oscillations.	2-13. Low-beta insert) 315
3-1. Off-energy orbits	PART 3 Energy oscillations	319
3-2. Orbit length: dilatation factor	3-1. Off-energy orbits	» 319
	3-2. Orbit length: dilatation factor	322

XI

3-3. Approximation for the off-energy function and the dilata-	325
2.4 Energy less and gain	326
2.5 Small oscillations	335
2.6 Large assillations: onergy operture	338
5-0. Large oscillations. energy aperture	000
PART 4 Radiation damping »	343
4-1. Energy loss	343
4-2. Damping of the energy oscillations »	346
4-3. Damping of betatron oscillations »	349
4-4. Radiation damping rates »	355
	057
PART 5. – Radiation excitation \ldots \ldots \ldots \ldots \ldots »	357
5-1. Quantum radiation	357
5-2. Energy fluctuations »	363
5-3. Distribution of the fluctuations »	368
5-4. Bunch length »	372
5-5. Beam width »	373
5-6. Beam height »	379
5-7. Beam lifetime from radial oscillations »	383
5-8. Beam lifetime from energy oscillations »	389
PART 6. – The luminosity of a high-energy storage ring \ldots »	392
6-1. Recapitulation »	392
6-2. The model storage ring »	394
6-3. High-energy luminosity »	396
6-4. Low-energy luminosity.	399
6-5. Maximum bunch length »	403
6-6. Optimum luminosity function »	405
6-7. Luminosity function for project SPEAR.	409

K. G. STEFFEN - Slected topics of beam optics relevant to storage ring design.

introduction. rundamentals of	traje	ctor	y '	opi	JIC	s.	·	•	•	•	•	"	414
1'1. Curved co-ordinate system.										•		»	412
1 ² . Linear trajectory equations	and	pri	nci	iple	e t	ra	jeo	eto	ory			*	412
Nondispersive deflecting systems					•	•	•	•				*	414
Isochronous deflecting systems .			•		•		•	•	•	•	•	»	416
	1'1. Curved co-ordinate system. 1'2. Linear trajectory equations Nondispersive deflecting systems Isochronous deflecting systems.	1'1. Curved co-ordinate system 1'2. Linear trajectory equations and Nondispersive deflecting systems Isochronous deflecting systems	1'1. Curved co-ordinate system 1'2. Linear trajectory equations and pri Nondispersive deflecting systems Isochronous deflecting systems	1'1. Curved co-ordinate system 1'2. Linear trajectory equations and princi Nondispersive deflecting systems Isochronous deflecting systems	1'1. Curved co-ordinate system	1'1. Curved co-ordinate system. .	1'1. Curved co-ordinate system. .						

4.	Amplitude and phase functions	pag.	418
5.	Envelope in terms of generating trajectories	*	419
6.	Collins' straight section))	422
7.	4-dimensional envelope formalism in systems with x - z coupling	»	424
8.	Closed orbit in a machine with bending-field distortions	»	429
9.	Dispersion (closed orbit for particle with momentum devi-		
	ation)	*	432
10.	Orbit length and momentum compaction factor	*	434
11.	Effect of focusing-field distortion on amplitude function and		
	v-value	*	435
12.	Resonant excitation of betatron oscillations	*	438
13.	Magnet lattice and radiation damping	»	441
	13'1. Combined function lattice with isomagnetic principal orbit, <i>i.e.</i> $1/\rho = \text{const}$ in all magnets, and $k = 0$ for		
	$1/\varrho = 0$	»	445
	13.2. Separate function lattice with $(1/\varrho)k = 0$ everywhere	"	446
	13'3 Lattice with $n = o^2 k = \frac{1}{2}$ in all bending magnets (e.g.		110
	ADONE)	*	447
14.	Fodo-channel for continuously varying the radiation damping		
	distribution	»	447
15.	Low- β insertion.	*	450

RICHARD WILSON – Predictions for colliding-beam experiments at 3 GeV and some plans at CEA.

1.	Elastic form factors and their extrapolation to the timelike		
	region	» 4	453
	1'1. Pion form factor	» 4	453
	1'2. Elastic nucleon form factors	» 4	454
	1'3. Isoscalar form factors	» 4	461
	1'4. Relation to pp scattering and the Wu-Yang model	» 4	463
2.	Inelastic scattering and its extrapolation	»	466
	2'1. Nucleon inelastic scattering	»	469
	2'2. Deep inelastic scattering	»	472
	2'3. Explanation of the Bjorken limit	»	476
	2'4. Summary of guesses for elastic processes	»	481
	2'5. Summary of guesses for inelastic processes; resonance		
	excitation \ldots	»	483
	2'6. Total cross-section	» -	483

3. Some experimental plans at CEA	•	٠	•	•	•	pag.	483
3'1. The bypass on line detector			•		•	*	483
3'2. Monitoring		•		•		*	488
3'3. 4π magnetic detector					•	»	489
3'4. Less than 4π magnetic detector (BOLDER)			•		•	*	49 2
3.5. Miscellaneous experiments. SU_3 checks	•		•		•	*	493
3.6. C and T checks \ldots \ldots \ldots \ldots	·	•	÷	•	•	*	493
4. Progress report on the CEA bypass project		٠	•		•	*	494
4'1. Low- β section			•			»	497
4'2. Some numbers of the CEA bypass		•				»	502
APPENDIX I Kinematics and definitions		•				*	504
APPENDIX II Colliding-beam processes			٠			*	507