

CONTENTS

Preface			
1	Canonical Quantization of Fields		1
	1-1	Variational Principle	2
	1-2	Canonical Equations	9
	1-3	Variational Principle and Conservation Laws	14
		References	20
2	Qua	ntization of Free Fields	21
	2-1	Real Spinless Fields	21
	2-2	The Meaning of Field Quantization—Nonrelativistic Examples	30
	2-3	Invariant Green's Functions and Peierls' Method of Quantization	ı 35
	2-4	r	46
		Complex Spin-1 Field	51
	2-6	Electromagnetic Field	63
	2-7	_orone condition	75
		Difficulties with the Lorentz Condition	78
	2-9		87
		Problems	100
		References	101
3	Qua	ntization of Interacting Fields	102
	3-1	Schrödinger Equation	102
	3-2	Multiple-Time Formulation	103
	3-3		108
	3-4	Yang–Feldman Formalism	109
		References	113
4	Cov	ariant Perturbation Theory	114
	4-1	Examples of Interacting Fields	114
	4-2	Decomposition of Field Operators	118

viii	Contents

	4-3	Covariant Integration of the Tomonaga-Schwinger Equation	
	4-4	Perturbation Expansion of Heisenberg Operators	127
	4-5	Evaluation of the S Matrix-Wick's Theorem	131
	4-6	Feynman Diagrams	139
	4-7	Removal of Bubble Diagrams	144
	4-8	Transition Probability	147
		References	148
5	Sim	ple Applications	149
	5-1	Scattering of an Electron by an External Field	149
	5-2	Compton Scattering	155
	5 -3	Pion-Nucleon Scattering	162
	5-4	Application to Decay Processes	168
	5-5	Derivative Couplings and Lagrangian Method	183
		Problems	190
		References	192
6	Ren	ormalization	193
	6-1	Conditions for the Proper Decomposition of the Hamiltonian	193
	6-2	Mass Renormalization	196
	6-3	Field-Operator Renormalization	200
	6-4	Renormalized Propagation Functions	206
	6-5	Vertex Renormalization	220
	6-6	Electron in an External Field	233
	6-7	Double Meaning of the Conservation of Charge and Ward's	
		Identity	237
		Problem	245
		References	246
7	Gre	en's Functions and Bound States	247
-	7-1	Ladder Approximation and the Bethe–Salpeter Equation	247
	7-2	Wick's Solution	250
	7-3	Schwinger's Theory of Green's Functions, I	254
	7-4	Schwinger's Theory of Green's Functions, II	261
	7-5	The Gell-Mann-Low Relation	265
	7-6	The Reduction Formula and the S-Matrix Elements in Terms	
•		of Green's Functions	269
	7-7	The S-Matrix Elements for Composite-Particle Reactions	280
	7-8	The Normalization Problem	285
	7-9	Examples of the Bound-State Problems	289
		Problems	300
		References	301

ontents			
	Dispe	ersion Theory	302
	8-1	The Källén-Lehmann Representation	302
	8-2	Calculation of the Propagation Functions	311
	8-3	The Asymptotic Condition	319
	8-4	The LSZ Reduction Formula	322
	8-5	Unitarity	329
	8-6	Arbitrariness in the Choice of Field Operators	332
	8-7	Dispersion Relations for the Vertex Functions	335
	8-8	Calculation of Vertex Functions from Dispersion Relations	342
	8-9	Application to Electrodynamics	347
	8-10	Gauge Invariance and Dispersion Relations	350
	8-11	The Muskhelishvili-Omnès Equation	359
	8-12	Møller's Formula and the Optical Theorem	363
	8-13	Dispersion Relations for Scattering Amplitudes	371
	8-14	The Goldberger-Treiman Relation	384
	8-15	The Adler-Weisberger Formula	396
	8-16	Landau-Cutkosky Theory	406
	8-17	The Mandelstam Representation	419
	8-18	The Cini-Fubini Approximation	429
	8-19	The Partial-Wave Dispersion Relations	437
	8-20	The N/D Method	441
	8-21	Further Discussion on the Scattering Equation	445
	8-22	Multichannel Integral Equations	455
		Problems	459
		References	461

462

Index