

CONTENTS

Editor's Foreword	. v
Preface	vii
Introduction	1
Part I. PAIRING FORCE THEORY	5
1. Pairing Forces and Their Effects in Special Situations	8
Effect of Pairing Forces on States of N Particles in Degenerate Particle States	19
 Effect of Pairing Forces on States of N Particles in Nondegenerate Particle States 	24
 Prediction of Properties of Noncollective Levels, and Comparison with Data 	54
5. Further Questions and Problems	67
References	74
Part II. COLLECTIVE MOTIONS	77
6. Nuclear Collective Motion	79
7. Collective Models of Collective Motion	86
8. Formal Description of the "Linearization Method" (or "Random Phase Approximation")	94

9. Derivation of the Linear Operator Relation: Assumptions and Approximations	105
10. Application of the RPA Method to Nuclear Oscillations: Case of Spherical Equilibrium and No Pairing Forces	116
11. Numerical Results and Comparison with Experiment for Closed-Shell Nuclei	143
12. Collective Vibrations with Pairing Forces	152
13. Permanently Deformed Nuclei and Their Moments of Inertia	162
References	169
Reprints	
Possible Analogy between the Excitation Spectra of Nuclei and Those of the Superconducting Metallic State, by A. Bohr, B. R. Mottelson, and D. Pines, <i>Phys. Rev.</i> , 110, 936 (1958)	173
Nuclear Structure Studies in the Tin Isotopes with (d, p) and (d, t) Reactions, by B. L. Cohen and R. E. Price, <i>Phys. Rev.</i> , 121, 1441 (1961)	176
Extension of the Shell Model for Heavy Spherical Nuclei, by Michel Baranger, <i>Phys. Rev.</i> , 120 , 957 (1960)	192
Studies of Stripping and Pickup Reactions on the Basis of the Pairing Plus Quadrupole-Quadrupole Interaction Model, by Shiro Yoshida, <i>Phys. Rev.</i> , 123 , 2122 (1961)	204
Time-Dependent Hartree-Fock Equations and Rotational States of Nuclei, by D. J. Thouless and J. G. Valatin, Nuclear Physics, 31, 211 (1962)	213
On the Collective Quadrupole State of C ¹² , by A. Goswami and M. K. Pal, <i>Nuclear Physics</i> , 35 , 544 (1962)	233
Index	247