CONTENTS

Preface	•	•	.•	•	•	٠	•		•	•	•	•	. •		v
Contents	•	ì	•	•	•	.•	٠	•				•		•	VI
General II	•		•	٠	•			•	1						

I. ALGEBRAIC METHODS

1.	Introduction	6
2.	Perturbation theory as a search for the poles of the Green's Function	7
	2a. Some special cases	10
3.	Modifications to Brillouin-Wigner perturbation theory	13
	3a. Variation-iteration procedure	14
	3b. Properties of Brillouin-Wigner series and related variational princi-	
	ples under certain transformations	17
	3b (i). Change of scale of unperturbed spectrum	18
	3b (ii). Displacement of the origin of unperturbed spectrum	21
4.	Rayleigh-Schrödinger series	23
	4a. Relation to Brillouin-Wigner series and convergence of the two	
	series	23
	4b. Scale transformation	25
5.	Sum rule techniques	27
6.	Counting-operator methods	31
	6a. Feenberg's method	31
	6b. Multiple scattering solutions	33
	6c. Addition theorem for the energy of a composite system	37
	6c (i). Connection with the optical model problem	40
	6c (ii). The total energy of an N-body system	41
Lis	st of important symbols in chapter I	42

II. DIAGRAMMATIC METHODS: LINKED CLUSTER THEOREM AND GENERAL FORMULAE

1.	Introduction
2.	The Rayleigh-Schrödinger expansion and determinantal wave-
	functions
	2a. Reduction in terms of two-particle matrix elements and clusters
	2b. Representation by means of diagrams
	2b (i). Goldstone diagrams

	2b (ii). Hugenholtz diagrams			53
	2b (iii). Brueckner diagrams			53
	2c. Cancellation of unlinked cluster terms: Example of third	d o	order	54
З.	Time dependent theory			61
	3a. Second quantisation			61
	3b. Time dependent perturbation theory			66
	3c. Linked cluster theorem			70
	3c (i). Rules for Goldstone diagrams			73
4.	Resolvent operator method: Time independent theory			73
	4a. Matrix elements of the resolvent operator			78
	4a (i). Notation and nomenclature			78
	4a (ii). Example of calculation of the contribution of a diagra	am		80
	4a (iii). $R(z)$ in terms of diagrams: The operator $G(z)$.			83
	4b. Energies and wave functions of stationary states		٠	86
	4c. Convolutions and decomposition of diagrams		•	87
	4d. Volume dependence of various quantities		•	91
	4e. Discussion of energy expressions		•	92
	4e (i). Ground state energies: quantities D_0 and \overline{G}_0		•	92
	4e (ii). Excited state energies		•	96
	4f. Discussion of wave function expressions		•	99
	4f (i). Ground state wave function			100
	4f (ii). Excited state wave functions		•	103
	4f (iii). Some special states		•	104
	4g. A theorem on single particle energies			108
Lis	st of important symbols in chapter II			113

III. REARRANGEMENT METHODS: REACTION MATRIX

1.	Introduction		•	•		118
2.	Vertex modification: the <i>t</i> -matrix	•	٠	•		119
	2a. Graphical representation of the t-matrix equation	n.				123
3.	Propagator modification	•				124
4.	Modified propagation in the <i>t</i> -matrix				•	128
	4a. An approximation	•	•			133
5.	The level shift after propagator modification	•				134
6.	Choice of the single particle potential: self-consistence	су.	•		•	136
Lis	t of important symbols in chapter III		•			140

IV. METHODS OF SOLVING *t*-MATRIX EQUATIONS AND APPLICATION TO NUCLEAR PROBLEMS

1.	Inti	roduction	•	•	•	•	•		•	•		•	•	•	•	142
	1a.	Some cha	arad	cteris	tics	olem		•	•			142				
	1b.	Standard	l fo	rms:	Beth	ie-Go	ldst	one e	quat	ion	•	•	٠	•	•	144

٩

CONTENTS

	1h (i) Two-particle wave-matrix	145
	1b (ii) First Brucekner approximation to the t-matrix	146
	1b (iii) Transformation to the soordinate space	147
~	ID (III). I ransformation to the coordinate space	150
2.	Nuclear matter case: effective mass approximation	150
•	Za. Singularities of the <i>t</i> -matrix	152
3.	Nuclear matter case: partial wave expansion	155
	3a. Diagonal elements of the t-matrix	150
	3b. Approximations in Green's function expressions	158
	3b (i). Pauli principle	159
	3b (ii). The energy denominators	159
	3c. Treatment of the hard core potentials	160
	3d. Qualitative effects of the hard core potentials	162
	3e. Scheme for energy calculations	165
4.	The t-matrix and effective single particle potentials in coordinate space	166
	4a. The <i>t</i> -matrix	167
	4a (i). Hard core contributions	170
	4a (ii). The t-matrix for S-state interaction: an approximate form .	170
	4b. Single particle potential	171
	4b (i). Spin-orbit part of single particle potential	174
5.	Single particle energies	176
6.	Application to nuclei	179
•.	6a. Brueckner-Gammel-Weitzner method	181
	6a (i) Reduction of the integro-differential equation to a differential	
	equation	184
	62 (ii) Approximate density dependence of the t-matrix	185
	6b. Eden's method	186
	60. Centre of mass motion	190
	A contract of calculations	191
7	Bu. Accuracy of calculations	192
7.	Further applications	102
	7a. Some parameters for nuclear matter	102
• •	/D. Snell model	100
Lis	st of important symbols in chapter 1 v	190

V. CONNECTION WITH SOME OTHER METHODS

1.	Jastrow's var	iatio	nal m	ethc	d	•	•	•	•	٠	•		•	•	201
2.	Method of sur	perpo	sition	1 of	conf	figu	ratio	ons			•				203
3.	Brenig's two-	parti	cle ap	pro	xima	atio	n.					•	•		207
4.	Pseudo-poten	tial n	nethc	d	•		•								211
5.	Theory of sur	erco	nduct	ivit	y					•			•	•	215
Lis	t of important	sym	bols	in cl	hapt	er '	ν.	•	•	•	•	٠	•	•	221
RE	FERENCES												•	•	222
Au	THOR INDEX			•			•		•		٠	•	•		229
Su	BJECT INDEX			•	•		•		•		•	•		•	232

ŶIII