CONTENTS

Editors' Introduction	vii
Translator's Preface	ix
Preface	xi
Introduction	xiii
CHAPTER I - THE PRINCIPLE OF OPERATION OF THE MICROTRON AND TYPES OF MICROTRONS	
Section 1 - Introductory Remarks	1
Section 2 - The Principle of Operation of the Microtron	2
Section 3 - Particle Injection	6
Section 4 - Types of Microtrons. Uses of Microtrons	12
Section 5 - The Positron Microtron	20
CHAPTER II - PHASE MOTION IN THE MICROTRON	
Section 1 - Small Phase Oscillations	23
Section 2 - Numerical Calculations of Nonlinear Phase Oscillations	32
Section 3 - Conditions of Capture and Resonance Acceleration of Particles	35
Section 4 - The Dependence of Phase Motion on the Thickness of the Accelerating Cavity	39
CHAPTER III - PARTICLE INJECTION CALCULATIONS	
Section 1 - Conditions for Injection	44
Section 2 - Equations of Motion	46
Section 3 - Methods of Numerical Calculations	49
Section 4 - Calculations for the First Type of Acceleration	52
Section 5 - Calculations for the Second Type of Acceleration	57
Section 6 - Microtron Efficiency and Means of Increasing It	61
CHAPTER IV - PARTICLE FOCUSING	
Section 1 - Vertical and Radial Motion	67
Section 2 - Calculations for Vertical Focusing	72
Section 3 - Calculations for Radial Focusing	78
Section 4 - Analysis of Vertical and Radial Motion	83
Section 5 - Particle Motion in a Slightly Nonuniform Magnetic Field	91

CHAPTER V - CONSTRUCTION OF A MICROTRON

Section 1	- General Remarks	99
Section 2	- The Microtron Magnet	99
Section 3	- The Microtron Cavity	107
Section 4	- Electron Source	112
Section 5	- Beam Extraction	115
Section 6	- The Accelerator Chamber and the Vacuum System	117
Section 7	- High Frequency Generators and Amplifiers and Design of the Waveguide System	119
Section 8	- The Microwave System of the Microtron	124
Section 9	- Power Supply and Control Systems	126
CHAPTER VI -	PHYSICAL CHARACTERISTICS OF THE MICROTRON	
Section 1	- The Power Needed by the Cavity, and Its Matching to the Waveguide	131
Section 2	- Microtron Efficiency	134
Section 3	- Choice of the Frequency for the Microtron	138
Section 4	- Conditions of Similarity for a Microtron	140
Section 5	- Beam-Cavity Interaction	141
Section 6	- Coherent Radiation of the Bunches and the Limiting Current in the Microtron	147
CHAPTER VII -	EXPERIMENTAL STUDY OF THE MICROTRON	
Section 1	- Power Measurement in the Cavity and the Current of Accelerated Electrons	151
Section 2	- The Structure of the Electron Bunches	155
Section 3	- Methods for Analyzing the Focusing	160
Section 4	- Results of the Experimental Investigation of Focusing	162
Section 5	- The Use of Accelerated Electrons for Obtaining Gamma Radiation and Neutrons	175
CHAPTER VIII	- CONTINUOUS WAVE MICROTRON	
Section 1	- On Transition to a Continuous Wave Mode	180
Section 2	- Energy Characteristics of a Continuous Wave Microtron	181
Section 3	- Construction of a Continuous Wave Microtron and the Possibilities Thereof	184
CONCLUSION		187
APPENDIX I -	DESIGNING THE MICROTRON	190
II -	MOTION CHARACTERISTICS AS EXPRESSED BY A SECOND ORDER MATRIX	195