CONTENTS

INTRODUCTION

		PHYSICAL FOUNDATIONS	
8	1.	DEVELOPMENT OF THE QUANTUM THEORY OF AN OSCILLATOR	PAGE
		FROM THE THEORY OF RADIATION	1
§	2.	GENERAL CONCEPTION OF THE QUANTUM THEORY	6
§	3.	THE CONCEPTIONS OF ATOMIC AND MOLECULAR STRUCTURE .	12
		FIRST CHAPTER	
		THE THEORY OF HAMILTON AND JACOBI	
§	4.	Equations of Motion and Hamilton's Principle	17
§	5.	THE CANONICAL EQUATIONS	20
		Cyclic Variables	24
§	7.	CANONICAL TRANSFORMATIONS	28
§	8.	THE HAMILTON-JACOBI DIFFERENTIAL EQUATION	36
		SECOND CHAPTER	
		PERIODIC AND MULTIPLY PERIODIC MOTIONS	
ş	9.	Periodic Motions with One Degree of Freedom	45
§	10.	THE ADIABATIC INVARIANCE OF THE ACTION VARIABLES AND THE	
		QUANTUM CONDITIONS FOR ONE DEGREE OF FREEDOM .	52
		THE CORRESPONDENCE PRINCIPLE FOR ONE DEGREE OF FREEDOM	60
		Application to Rotator and Non-Harmonic Oscillator	63
		MULTIPLY PERIODIC FUNCTIONS	71
		SEPARABLE MULTIPLY PERIODIC SYSTEMS	76
3	15.	GENERAL MULTIPLY PERIODIC SYSTEMS. UNIQUENESS OF THE	0.0
	10	ACTION VARIABLES	86
9	10.	THE ADIABATIC INVARIANCE OF THE ACTION VARIABLES AND THE QUANTUM CONDITIONS FOR SEVERAL DEGREES OF FREEDOM.	0.5
c	17	THE CORRESPONDENCE PRINCIPLE FOR SEVERAL DEGREES OF	95
3	17.		99
2	19	FREEDOM	107
•		QUANTUM THEORY OF THE TOP AND APPLICATION TO MOLECULAR	107
S	13.	37	110
8	20	MODELS	110
3	 0.	DIATOMIC MOLECULES	122
			144

THIRD CHAPTER

SYSTEMS WITH ONE RADIATING ELECTRON							
	PAGE						
§ 21. Motions in a Central Field of Force	. 130						
§ 22. THE KEPLER MOTION	. 139						
§ 22. THE KEPLER MOTION	. 147						
§ 24. THE SERIES ARRANGEMENT OF LINES IN SPECTRA NOT OF	THE						
HYDROGEN TYPE	. 151						
§ 25. ESTIMATES OF THE ENERGY VALUES OF THE OUTER ORBIT							
SPECTRA NOT OF THE HYDROGEN TYPE	. 155						
SPECTRA NOT OF THE HYDROGEN TYPE	. 161						
§ 27. THE RYDBERG CORRECTIONS FOR THE OUTER ORBITS AND	THE						
POLARISATION OF THE ATOMIC CORE	. 165						
	. 169						
S OO TEND V DAY CHROMP.	. 173						
§ 30. Atomic Structure and Chemical Properties							
§ 31. THE ACTUAL QUANTUM NUMBERS OF THE OPTICAL TERMS							
§ 32. THE BUILDING UP OF THE PERIODIC SYSTEM OF THE ELEME							
§ 33. THE RELATIVISTIC KEPLER MOTION	. 201						
§ 34. The Zeeman Effect	~~~						
	. 212						
§ 36. The Intensities of Lines in the Stark Effect of Hydrog							
§ 37. The Secular Motions of the Hydrogen Atom in an Elec							
FIELD							
§ 38. THE MOTION OF THE HYDROGEN ATOM IN CROSSED ELECTRIC							
MAGNETIC FIELDS	. 235						
§ 39. The Problem of Two Centres	. 241						
FOURTH CHAPTER							
THEORY OF PERTURBATION							
THEORY OF PERIORBATION							
§ 40. THE SIGNIFICANCE OF THE THEORY OF PERTURBATIONS FOR	THE						
MECHANICS OF THE ATOM	. 247						
§ 41. PERTURBATIONS OF A NON-DEGENERATE SYSTEM	. 249						
§ 42. APPLICATION TO THE NON-HARMONIC OSCILLATOR	. 257						
§ 43. PERTURBATIONS OF AN INTRINSICALLY DEGENERATE SYSTEM	4 . 261						
§ 44. An Example of Accidental Degeneration	. 265						
§ 45. Phase Relations in the Case of Bohr Atoms and Molec	ULES 269						
§ 46. Limiting Degeneration	. 275						
§ 47. Phase Relations to any Degree of Approximation .	. 282						
§ 48. THE NORMAL STATE OF THE HELIUM ATOM	. 286						
§ 49. THE EXCITED HELIUM ATOM	. 292						
9 49. THE EXCITED RELION ATOM	. 434						
APPENDIX							
I. Two Theorems in the Theory of Numbers	. 300						
II. ELEMENTARY AND COMPLEX INTEGRATION	. 303						
II. DUDWENIANI AND COMMENT MILESCOPE.	. 500						
▼ Signer at	919						