CONTENTS

I. GENERAL PROPERTIES OF THE NUCLEUS

1.	INTRODUCTION	1
2.	QUANTUM STATES, BINDING ENERGY, BINDING FRACTION	3
3.	STABLE AND UNSTABLE NUCLEI, FISSION, ALPHA-DECAY, BETA-DECAY	
	A. "Dynamical" Instability	7
	B. Beta-Radioactivity	9
4.	SIZE OF THE NUCLEI	13
	A. Scattering of High-Energy Neutrons by Nuclei	14
	B. The Yield of Nuclear Reactions Initiated by Protons or Alpha-	**
	Particles	14
	C. Alpha-Decay Lifetimes	14
	D. Maximum Energy of Some Beta-Rays	14
5.	THE COLLOWB BARRIER	16
6.	ANGULAR MOMENTUM SPIN	91
7.	ELECTRIC AND MAGNETIC MOMENTS	41
	A Electric Moments	92
	B Magnetic Moments	20
8	STATISTICS	20
0.	SYMBOLS	39
		44
	II. TWO-BODY PROBLEMS AT LOW ENERGIES	
1.	INTRODUCTION	48
2.	THE GROUND STATE OF THE DEUTERON; SIMPLIFIED DISCUSSION (CEN-	
	TRAL FORCES ASSUMED)	49
3.	NEUTRON-PROTON SCATTERING	
	A. Simple Theory	56
	B. Comparison with Experiment: The Spin Dependence of Nuclear	
	Forces	65
	C. The Effect of Chemical Binding	71
	D. Coherent Scattering of Neutrons by Protons	80
4.	PROTON-PROTON SCATTERING	86
5.	THE TENSOR FORCE	00
	A. Experimental Discovery of the Existence of Non-central Forces	94
	B. General Form of the Non-central Force	96
	C. Properties of the Tensor Force	97
	D. The Ground State of the Deuteron: Dynamics	99
	E. The Ground State of the Deuteron: Quadrupole Moment	105
	F. The Ground State of the Deuteron: Magnetic Moment	108
	G. Neutron-Proton Scattering below 10 Mey	110
	SYMBOLS	113
	III. NUCLEAR FORCES	110
1.	INTRODUCTION	110
2.	STABILITY OF A NUCLEUS AGAINST COLLAPSE THE IMPOSSIBILITY OF	110
	ATTRACTIVE FORCES BETWEEN ALL PAIRS	191
		141

Contents

3.	Exchange Forces	
	A. Qualitative Considerations	127
	B. Formal Definition of Exchange Forces	135
4.	THE SATURATION CONDITIONS	
	A. The Comparison Theorem	140
	B. Saturation Conditions for Mixed Wigner and Majorana Forces	146
	C. The Complete Saturation Conditions for Central Forces	149
	D. Saturation Conditions for Tensor Forces	150
5.	THE ISOTOPIC SPIN FORMALISM	153
	Symbols	162
	IN TWO DODY DOOD ENG AT MOU ENEDGIES	
	IV. IWO-BODY PROBLEMS AT HIGH ENERGIES	
1.	INTRODUCTION	168
2.	NEUTRON-PROTON SCATTERING AT ENERGIES BETWEEN 10 AND 30 MEV	171
3.	NEUTRON-PROTON SCATTERING AT ENERGIES LARGER THAN 30 MEV	182
4.	Proton-Proton Scattering	186
	Symbols	188
	V. THREE- AND FOUR-BODY PROBLEMS	
1.	Introduction	191
2.	THE GROUND STATE OF THE TRITON: CENTRAL FORCES	193
3.	THE GROUND STATE OF THE ALPHA-PARTICLE; CENTRAL FORCES	202
4.	H ³ AND He ³ : The Equality of Neutron-Neutron and Proton-Proton	
	Forces	203
5.	THE GROUND STATE OF THE TRITON; TENSOR FORCES	206
	Symbols	208
	VI NUCLEAR SPECTROSCOPY, I CENERAL THEORY	
	VI. NUCLEAR SI ECTROSCOLT. I. GENERAL THEORY	
1.	THE SYSTEMATICS OF STABLE NUCLEI	
	A. Stability Conditions	211
~	B. Discussion of Stable Nuclei	217
2.	THE SEMI-EMPIRICAL MASS FORMULA OF WEIZSACKER	225
3.	DETAILED STUDY OF THE SYMMETRY EFFECT	233
4.	THE SYMMETRY ENERGY AND THE SYSTEMATICS OF STABLE NUCLEI	241
Ъ.	NUCLEAR MAGNETIC MOMENTS IN LIGHT ELEMENTS	248
6.	THE SPECTROSCOPIC CLASSIFICATION OF NUCLEAR ENERGY LEVELS	254
	SYMBOLS	262
	VII. NUCLEAR SPECTROSCOPY: II. SPECIAL MODELS	
1.	INTRODUCTION	266
2.	THE UNIFORM MODEL OF WIGNER	
	A. Theory	266
	B. Comparison with Experiment	274
3.	THE INDEPENDENT-PARTICLE MODEL	
0.	A. Introduction	278
	B. The P Shell Configurations	281
	C. The Energy of the Ground State	285
	D. Nuclear Magnetic Moments on the Independent-Particle Model	289
	E. Criticism of the Independent-Particle Model	291
4.	THE ALPHA-PARTICLE MODEL OF THE NUCLEUS	
_,	A. Outline of the Theory	292
	B. Criticism of the Alpha-Particle Model	298

х

5.	THE LIQUID DROP MODEL	300
	Symbols	305
	VIII MUCIEAR DEACTIONS, OFNEDAL THEODY	
	VIII. NUCLEAR REACTIONS: GENERAL THEORY	
1.	INTRODUCTION	
	A. Description of a Nuclear Reaction	311
	B. Channels	313
	C. Energy Relations	315
2.	CROSS SECTIONS	
	A. Geometrical Limitations on Reaction and Scattering Cross Sections	317
	B. The Determination of Cross Sections from the Conditions at the	
	Nuclear Surface, for Neutrons with $l=0$	325
	C. The Determination of Cross Sections from the Conditions at the	
	Nuclear Surface. General Case	329
	D. The Angular Distribution of Elastically Scattered Particles	335
	E. The Reciprocity Theorem for Nuclear Reactions	336
3.	THE COMPOUND NUCLEUS, CONTINUUM THEORY	
	A. The Bohr Assumption	340
	B. Nuclear Reactions, Cross Sections, and Emission Rates	342
4.	DETERMINATION OF CROSS SECTIONS, CONTINUUM THEORY	345
5.	TRANSMISSION OF POTENTIAL BARRIERS	358
6.	THE DECAY OF THE COMPOUND NUCLEUS	
	A. Competition; Evaporation Model	365
	B. Secondary Nuclear Reactions	374
7.	RESONANCE THEORY; QUALITATIVE TREATMENT	
	A. The Occurrence of Resonances	379
	B. The Compound Nucleus, Level Widths, Qualitative Description	383
	C. Interpretation of D and Γ	386
	D. Cross Sections for Nuclear Reactions	391
	E. Behavior of Nuclear Cross Sections near Threshold	394
8.	RESONANCE THEORY; DETERMINATION OF CROSS SECTIONS	
	A. Pure Resonance Scattering	398
	B. Resonance Scattering and Resonance Reactions	406
9.	RESONANCE THEORY; DECAYING STATES OF THE COMPOUND NUCLEUS	
	A. The Potential Well Model	412
	B. The Actual Nucleus	417
10.	SPIN AND ORBITAL ANGULAR MOMENTUM	
	A. $l=0$ Neutrons	422
	B. Particles with arbitrary l	426
	Symbols	441
	IX NUCLEAR DEACTIONS, ADDITION OF THE THEORY	
	TO EXPERIMENTS	
1.	INTRODUCTION	150
2	NEUTRON-INDUCED REACTIONS	400
	A. Low and Intermediate Energy Intermediate Nuclei	162
	B. Low Energy, Heavy Nuclei	400
	C. Intermediate Energy, Heavy Nuclei	176
	D. High Energy, Intermediate and Heavy Nuclei	420
	E. Very High Energy, Intermediate and Heavy Nuclei	481
		_

Contents

3.	PROTON- AND ALPHA-PARTICLE-INDUCED REACTIONS	
	A. High Energy, Below Neutron Reaction Threshold	484
	B. High Energy, Above Neutron Reaction Threshold	490
	C. Very High Energy	490
4.	NEUTRON-, PROTON-, AND ALPHA-PARTICLE-INDUCED REACTIONS AT	
	Ultrahigh Energies	494
5.	Reactions with Light Nuclei	496
	A. $B^{10}(n,\alpha)Li^{7}$	497
	B. Proton Reactions with Li ⁷	498
	C. Reactions Leading to the Compound Nucleus N ¹⁵	501
6.	DEUTERON-INDUCED REACTIONS	504
	Symbols	511
	Y FORMAL THEORY OF NUCLEAR REACTIONS	
	The Succession Marcel	
1.	THE SCATTERING MATRIX	F 1 7
	A. The General Form of the wave Functions	517
	B. Definition of the Scattering Matrix	518
0	C. Cross Sections Expressed in Terms of the Scattering Matrix	320
2.	CONSERVATION AND RECIPROCITY THEOREMS FOR NUCLEAR REACTIONS	591
	A. Ingoing and Outgoing waves	521
	D. The Conservation Theorems	595
	D. The Receiversal	520
	E. Besimpoity and Detailed Belence	520
2	E. Reciprocity and Detailed Datance	000
э.	A The Deastion Amplitude	529
	A. The Reaction Amphitude B. The Concentration of Parity	522
	C. Limitations Impaced by the Complexity of the Incident Beem	525
	D. Limitations Imposed by the Complexity of the Incident Beam	540
4	THE WIGNER MANY-LEVEL FORMULA	010
4.	A The Compound Nucleus as a "Black Boy"	542
	R. The Derivative Matrix	544
	C. The Belation between The Derivative Matrix and the Scattering	011
	Matrix	547
	D The Resonance Levels of the Compound Nucleus	549
	E. Derivation of the Many-Level Dispersion Formula	551
	F. Discussion of the Many-Level Dispersion Formula	554
	G The Single-Level Breit-Wigner Formula	557
	SYMBOLS	559
	XI. SPONTANEOUS DECAY OF NUCLEI	
1	ENERGETIC CONSIDERATIONS	565
2.	GENERAL THEORY OF ALPHA-DECAY	568
3.	DISCUSSION OF EXPERIMENTAL DATA	574
0.	SYMBOLS	579
	XIL INTERACTION OF NUCLEI WITH ELECTROMAGNETIC	
	RADIATION	
1	INTRODUCTION	583
2	MULTIPOLE RADIATION AND SELECTION RULES	
	A. Multipole Radiation	584
	B. Selection Rules	587

Co	nte	nts
00	1100	1100

3.	THE PROBABILITY OF MULTIPLE EMISSION AND ABSORPTION	
	A. The Source of the Field	590
	B. The Energy Emitted per Second, and Its Angular Distribution	593
	C. Transition to Quantum Mechanics: (1) Emission and Absorption	595
	D. Transition to Quantum Mechanics: (2) The Matrix Elements	597
4.	RADIATIVE TRANSITIONS IN THE TWO-BODY PROBLEM	
	A. Transitions Into and Out of the Continuum: Cross Sections	600
	B. Radiative Neutron-Proton Capture: Selection Rules	603
	C. Radiative Neutron-Proton Capture: Computation of the Cross Sec-	
	tion and Comparison with Experiment	604
	D Photodisintegration of the Deuteron: Magnetic Dipole Effect	608
	E Photodisintegration of the Deuteron: Electric Dipole Effect	600
	E. Photodisintegration of the Deuteron; Energies above 10 Mey	613
5	Internet Company	015
J .	A Conversion Coefficients	614
	R. Conversion Coefficients	014
	D. 0→0 Transitions	020
0	C. Internal Pair Formation	622
0.	I RANSITIONS BETWEEN LOW-LYING STATES OF NUCLEI	
	A. Theoretical Estimates	623
	B. Experimental Material; Nuclear isomers	629
_	C. Directional Correlations between Successively Emitted Gamma-Rays	635
7.	TRANSITIONS INVOLVING HIGHLY EXCITED STATES	
	A. General Considerations	639
	B. Sum Rules	640
	C. Estimates of Matrix Elements Involving Highly Excited Nuclear	
	States	644
	D. Radiative Capture of Neutrons	647
	E. Nuclear Photoeffect	651
	Symbols	659
	XIII BETA DECAY	
	-	
1.	INTRODUCTION	670
2.	THE NEUTRINO HYPOTHESIS AND THE SHAPE OF THE BETA-SPECTRUM	
	Selection Rules for "Allowed" Transitions	673
3.	Orbital Electron Capture	684
4.	THE HALF-LIVES OF BETA-EMITTERS AND EVIDENCE CONCERNING THE	
	Selection Rules in Allowed Transitions	688
5.	DETAILED THEORY OF BETA-DECAY; TRANSITIONS OF ORDER 0	
	A. The Matrix Element	694
	B. Non-relativistic Treatment	697
	C. Relativistic Treatment	705
6.	DETERMINATION OF MATRIX ELEMENTS; FAVORED AND UNFAVORED	
	TRANSITIONS	718
7.	BETA-TRANSITIONS OF HIGHER ORDER	
	A. Non-relativistic Theory: Selection Rules, Matrix Elements	726
	B. Non-relativistic Theory: Angular Correlation. Spectrum Shape.	10000001 0 0
	Lifetime	730
	C. Relativistic Theory: Selection Rules, Matrix Elements	735
	D. Relativistic Theory: Angular Correlation, Spectrum Shape, Lifetime	740
	SYMBOLS	749

Contents

XIV. NUCLEAR SHELL STRUCTURE

1. Evidence for the Existence of "Magic Numbers"	$761 \\ 767$
2. GENERAL CONSIDER MODEL	777
SUBDAC	770
21 WROF2	115
APPENDIX A. ANGULAR MOMENTUM OPERATORS ANI EIGENFUNCTIONS)
1. ROTATIONS AND ANGULAR MOMENTA	781
2. Spherical Harmonics	782
3. EXPANSION OF A PLANE WAVE INTO SPHERICAL WAVES	784
4. Intrinsic Spin	785
5. Vector Addition of Angular Momenta	789
Symbols	793
APPENDIX B. MULTIPOLE RADIATION	
1. VECTOR SPHERICAL HARMONICS	796
2. ELECTRIC AND MAGNETIC MULTIPOLE EXPANSION IN FREE SPACE	799
3. ENERGY AND ANGULAR MOMENTUM OF THE MULTIPOLE RADIATION	802
4. THE SOURCES OF MULTIPOLE RADIATION; MULTIPOLE MOMENTS	803
5. EXPANSION OF A PLANE WAVE INTO MULTIPOLE FIELDS	807
6. THE ABSORPTION PROBABILITY OF A LIGHT QUANTUM	809
Symbols	811
References	
Index	

xiv