CONTENTS

Pre	face		vii
		INTRODUCTION	
1		Klein-Gordon and Dirac equations and the interpretation of	
		negative-energy solutions	3
	1.1	The Klein-Gordon equation	3
	1.2		6
	1.3	, ,	
		solutions	11
		PART I: THE BEST THEORY WE HAVE:	
		QUANTUM ELECTRODYNAMICS	
		Quintom EBECTROD Trummes	
2	The o	electromagnetic interactions of spin-0 particles	21
	2.1	First-order perturbation theory	21
	2.2	Electromagnetic scattering of charged spinless bosons	24
	2.3	The Feynman diagram for the matrix element	29
	2.4	More examples: $\pi^+\pi^+$ and $\pi^+\pi^-$ scattering	31
	2.5	Derivation of the cross section	33
	2.6	Explicit evaluation of the π^+K^+ cross section in the	
		см frame	35
	2.7	Pion Compton scattering I	39
	2.8	Polarisation vectors for spin-1 particles	41
	2.9	The propagator for a virtual pion	44
	2.10	Pion Compton scattering II	45
	2.11	Higher-order calculations: trees and loops	50
2	The	Jestnamagnetic interestions of spin 1 particles	54
3	3.1	electromagnetic interactions of spin-½ particles Positive- and negative-energy spinors	54
	3.1	Feynman interpretation of negative-energy solutions	56
	3.3	Electrons interacting with potential A^{μ}	57
	3.4	Normalisation of Dirac spinors	60
	3.5	π^+e^- elastic scattering	62
	0.0	n o oldstie seattering	

xiv CONTENTS

	3.6	Trace techniques for spin summations	63
	3.7	Cross sections for $e^-\pi^+$ and $e^+\pi^+$ scattering	69
	3.8	The pion form factor and invariance arguments	70
	3.9	Electron-muon elastic scattering	74
	3.10	Electron-proton elastic scattering and nucleon form factors	77
	3.11	Higher-order calculations and tests of QED	81
	5.11	righti-order calculations and tests of QED	01
4	Deep mode	inelastic electron-nucleon scattering and the quark parton	90
	4.1		89
		Inelastic ep scattering: kinematics and structure functions	89
	4.2	Bjorken scaling and the parton model	92
	4.3	The quark parton model	99
	4.4	The Drell-Yan process	102
	4.5	e ⁺ e ⁻ annihilation into hadrons	104
		PART II: NOT QUITE A THEORY:	
		PHENOMENOLOGY OF WEAK INTERACTIONS	
5		duction to weak interactions	111 111
	5.1	Fermi theory and intermediate vector bosons	
	5.2	Parity violation in weak interactions	116
	5.3	Vector and axial vector currents	117
	5.4		120
	5.5	V-A theory	123
6	The	hadronic weak current and neutral currents	130
	6.1	Universality and Cabibbo theory	130
	6.2	Deep inelastic neutrino scattering	133
	6.3	Neutral currents	135
	6.4	Charm and the Glashow-Iliopoulos-Maiani Mechanism	138
	6.5	Historical footnote	141
		PART III: DISEASES AND THEIR CURE:	
		THE GAUGE PRINCIPLE	
7		culties with weak interaction phenomenology	147
	7.1	Violation of unitarity in the pointlike four-fermion model	147
	7.2	Violation of unitarity bounds in the IVB model	149
	7.3	Renormalisation	154
	7.4	The problem of nonrenormalisability in weak interactions	162

CONTENTS	XV

8	Gaug	e invariance as a dynamical principle	168
	8.1	Gauge invariance and the Maxwell equations	168
	8.2	Gauge invariance in quantum mechanics	172
	8.3	The argument reversed: the gauge principle	175
	8.4	Other global phase invariances	179
	8.5	Non-Abelian gauge theories	184
9		en gauge invariance	192
	9.1	Introduction	192
	9.2	Screening currents and the generation of 'photon mass'	193
	9.3	The nature of the physical vacuum: spontaneous symmetry	
		breakdown	203
	9.4	Gauge invariance when the symmetry is hidden	206
	9.5	't Hooft's gauges	212
	9.6	Postscript	216
	PA	RT IV: APPLICATIONS OF THE GAUGE PRINCIPLE	
10	An ii	ntroduction to quantum chromodynamics	221
	10.1	Introduction	221
	10.2	SU(3) _c as a local symmetry: a first look at the Feynman	
		rules for QCD	224
	10.3	Electromagnetic interactions of vector particles and the	220
		three-gluon vertex	228
	10.4	The four-gluon vertex	234
	10.5	Applications of perturbative QCD	235
11		Glashow-Salam-Weinberg gauge theory of electroweak	220
		actions	238
	11.1	Introduction	238
	11.2	Weak isospin and hypercharge: the $SU(2) \times U(1)$ group of the electroweak interactions	239
	11.3	$SU(2)_L \times U(1)$ as a local symmetry: charged-current	237
	11.3	vertices	243
	11.4	Hidden $SU(2)_L \times U(1)$ gauge invariance	244
	11.5		
		Higgs sector	253
	11.6	The problem of the fermion masses	258
	11.7		260

xvi CONTENTS

PART V: BEYOND THE TREES

12	Four 1	ast things	271
	12.1	Ghost loops and unitarity in non-Abelian gauge theories	271
	12.2	Asymptotic freedom	281
	12.3	Grand unification	287
	12.4	Confinement	292
Apj	oendix	A: Revision Notes	298
Apı	pendix	B: Natural units	305
Apj	endix	C: Maxwell's equations: Choice of units	308
Apj	pendix	D: Dirac algebra and trace theorems	310
App	pendix	E: Example of a cross section evaluation	314
-	* (F: Feynman rules for tree graphs in QED, QCD and the i model	320
Rei	ference	S	329
Ind	ex		333