.

Part I Kinetics of Large Reaction Systems

Modeling of Large Reaction Systems By M. Frenklach (With 3 Figures)	2
Modeling Studies of RNA Replication and Viral Infection By C.K. Biebricher, M. Eigen, W.C. Gardiner, Jr., Y. Husimi, HC. Keweloh, and A. Obst (With 19 Figures)	17
Kinetic Modeling of Autoignition of Higher Hydrocarbons: n-Heptane, n-Octane, and iso-Octane By C.K. Westbrook and W.J. Pitz (With 4 Figures)	39
Unified Modeling of Acetaldehyde Autoignition By A. Koichi Hayashi, Y. Ohta, T. Fujiwara, and H. Takahashi (With 4 Figures)	55
A Shock Tube Study of High Temperature Reaction Rates for $CH_3 + CH_3$. By P. Frank and M. Braun-Unkhoff (With 6 Figures)	69
Modelling of High Temperature Gas-Phase Chemical Reaction Systems Behind Shock Waves By K. Natarajan and P. Roth (With 4 Figures)	80
Modelling Studies of Elementary Chemical Reactions. By J.E. Dove and S. Raynor (With 4 Figures)	90

Part II Stability of Reaction Systems

A Graphical Determination of the Possibility of Multiple Steady	
States in Complex Isothermal CFSTRs	
By P.M. Schlosser and M. Feinberg (With 11 Figures)	102
Oscillatory Chemical Reactions. By I.R. Epstein (With 8 Figures)	116

Modeling Micromixing Effects in a Temporal Chemical Dissipative Structure: Bistability of the (ClO_2^-, I^-, H^+) Reaction By J. Boissonade and P. De Kepper (With 6 Figures)	133
Modelling Temperature and Reaction-Rate Oscillations Accompanying Simple Exothermic Decomposition in a Closed Vessel. By P. Gray, S.R. Kay, and S.K. Scott (With 4 Figures)	142
The Interpretation of Oscillatory Ignition During Hydrogen Oxidation in an Open System. By P. Gray, J.F. Griffiths, A.J. Pappin, and S.K. Scott (With 6 Figures)	150
Bistability and Oscillations in the Oxidation of Hydrazine By M. Markus, E. Liefke, and U. Onken (With 8 Figures)	160
Multistability, Scaling, and Oscillations By B. Fiedler and P. Kunkel (With 2 Figures)	169
Syntrophic Cocultures in Nature and in Model Systems By E. Bohl and R. Kreikenbohm (With 2 Figures)	181

Part III Laminar Reactive Flow

A Structured Approach to the Computational Modeling of Chemical Kinetics and Molecular Transport in Flowing Systems By R.J. Kee and J.A. Miller (With 7 Figures)	196
On the Use of Adaptive Moving Grid Methods in Combustion Problems. By J.M. Hyman and B. Larrouturou (With 7 Figures)	222
Simulation of Premixed Flames with Mixed Fuels of Methane and Carbon Monoxide. By S. Fukutani and H. Jinno (With 7 Figures)	233
Time-Dependent Simulations of Laminar Flames in Hydrogen-Air Mixtures. By K. Kailasanath and E.S. Oran (With 4 Figures)	243
Calculated Dependence of Flame Speed and Flame Width on Pressure. By R.J. Blint (With 7 Figures)	253
Towards a Quantitatively Consistent Scheme for the Oxidation of Hydrogen, Carbon Monoxide, Formaldehyde and Methane in Flames. By G. Dixon-Lewis (With 4 Figures)	265
Extinction of Strained Premixed Hydrogen-Air Flames By V. Giovangigli and M.D. Smooke (With 6 Figures)	281
Concentration Profiles of Flame Radicals Determined by Laser-Induced Fluorescence. By K. Kohse-Höinghaus, S. Kelm, U. Meier, J. Bittner, and Th. Just (With 6 Figures)	292

Extinction Behavior of a Tubular Flame for Small Lewis Numbers By T. Takeno, S. Ishizuka, M. Nishioka, and J.D. Buckmaster (With 6 Figures)	302
The Asymptotic Structure of Methane Flames. Part I: Stoichiometric Flames By N. Peters and F.A. Williams (With 2 Figures)	310
A Model for Chemical Reactions in Porous Media By U. Hornung and W. Jäger (With 16 Figures)	318
Computer Model for Tubular High-Pressure Polyethylene Reactors By B. Tilger and G. Luft (With 3 Figures)	335
Simulation of Diffusion and Chemical Reactions with a Cell-Mixing Stochastic Model By Y. Karni, M. Goldstein, and E. Bar-Ziv (With 3 Figures)	346

Part IV Turbulent Reactive Flow

Methods of Including Realistic Chemical Reaction Mechanisms in Turbulent Combustion Models. By K.N.C. Bray	356
Modeling of Turbulent CO/Air Diffusion Flames with Detailed Chemistry. By F. Behrendt, H. Bockhorn, B. Rogg, and J. Warnatz (With 3 Figures)	376
Coherent Flame Modelling of Chemical Reactions in a Turbulent Mixing Layer By D. Veynante, S.M. Candel, and J.P. Martin (With 10 Figures)	386
pdf Models for Turbulent Mixing with Application to Autoignition By B. Hakberg (With 10 Figures)	399
Index of Contributors	409