Contents

ı.	INTRODUCTION		
	1.1.	The Idea of Pseudopotentials; Hellmann's Work	1
	1.2.	Ab Initio versus Model Methods in the Quantum Theory of Atoms and Molecules	5
	1.3.	The Goals of Pseudopotential Theory; Scope of the Book	7
	1.4.	Notation, Nomenclature, and Referencing	9
2.		CT PSEUDOPOTENTIALS FOR E-VALENCE-ELECTRON SYSTEMS	12
	2.1.	The Method of Szepfalusy	12
	2.2.	The Method of Phillips and Kleinman A. The Formulation of the Method, 18 B. Exact Solutions of the Phillips-Kleinman	18
		Equation for Atoms, 20	

viii	Contents

	2.3.	The Method of Cohen and Heine A. Indeterminacy of the PK Solutions, 25 B. Kinetic Energy Minimization, 27 C. General Form of the PK-type Potentials, 30 D. Cancellation Theorem, 34	25
	2.4.	The Method of Weeks and Rice	35
	2.5.	Pseudopotentials for Correlated Core A. Introduction, 42 B. The Method of Öhrn and McWeeny, 43 C. The G1 Method of Goddard, 46 D. Core Polarization, 47	42
3.		SITY-DEPENDENT PSEUDOPOTENTIALS FOR C-VALENCE-ELECTRON SYSTEMS	49
	3.1.	Derivation of the Density-Dependent Pseudopotential from the Thomas-Fermi Model A. Introduction, 49 B. Hellmann's Method, 50	49
	3.2.	Derivation of the Density-Dependent Pseudopotential from the Exact Theory A. Szepfalusy's Method, 53 B. The Author's Method, 57	53
	3.3.	A Survey of Formulas for Density-Dependent Pseudopotentials A. Pseudopotentials for Atoms and Molecules, 58 B. Pseudopotentials for Atoms, 60 C. Pseudopotentials for Cylindrical Symmetry, 70	58
	3.4.	The Virial Theorem	72
	3.5.	Test Calculations	76
4.		DEL PSEUDOPOTENTIALS FOR E-VALENCE-ELECTRON SYSTEMS	79
	4.1.	Introduction	79
	4.2.	Guidelines for the Construction of Model Potentials	80
	4.3.	A Survey of Model Potentials	86

Contents	ix
----------	----

5.	THE	ALL-ELECTRON PSEUDOPOTENTIAL MODEL (APM)	95
	5.1.	Introduction	95
	5.2.	Exact All-Electron Pseudopotential Theory	96
	5.3.	The All-Electron Pseudopotential Model A. Density-Dependent Pseudopotentials, 104 B. Pseudo-Orbital Condition, 106 C. Formulation of the APM, 108	104
	5.4.	Single Zeta Calculations for the Average Energy of Atomic Configurations	109
	5.5.	$X\alpha$ Model with Pseudopotentials	119
6.		QUANTUM THEORY OF ATOMS WITH TWO	
	VAL	ENCE ELECTRONS	120
	6.1.	0. 30-000 - 50-000 - 6000 2	120
		 A. Introduction, 120 B. The Theory of Fock, Veselov, and Petrashen: Correlated Pair Function for the Valence Electrons, 121 	
		C. Some Mathematical Problems Connected with the Calculation of Pair Functions, 130	
	6.2.	Pseudopotential Theory: Exact Formulation	134
	6.3.	Pseudopotential Theory: Model Formulation A. Introduction, 145 B. The Derivation of the Model Hamiltonian, 146 C. Representative Calculations, 150	145
7.		QUANTUM THEORY OF ATOMS WITH ARBITRARY IBER OF VALENCE ELECTRONS	153
	7.1.	The Exact Pseudopotential Transformation of the Valence-Electron Hartree-Fock Equations	153
	7.2.	Model Potentials for Atoms with Many Valence Electrons	163
		A. Guidelines for the Models and Error Estimation, 163B. A Survey of the Models, 167	

x	Contents

		OIX C.	The Hermitian Character of the Operator PHP Orthogonality Projection Operators for the	273
AP	PEND	OIX B.	Orthogonality Projection Operators for One Valence Electron	268
АP	PEND	OIX A.	Exact Solutions of the Phillips-Kleinman Equation for Atoms	257
	9.5.	Furthe	er Contributions to the Theory of Excited States	253
	9.4.		hydberg States of Atoms and Molecules: the od of Hazi and Rice	245
	9.3.	Calcul	ations for Atoms with Two Valence Electrons	244
	9.2.	The C Electr	Optical Spectrum of Atoms with One Valence on	235
	9.1.	Introd	uction	234
9.	EXC	ITED S	STATES AND RYDBERG STATES	234
	8.5.	Repre	sentative Calculations	223
	8.4.		ssion of the Derivation of the Molecular ive Hamiltonian	212
	8.3.		Perivation of the Effective Pseudopotential tonian for a Diatomic Molecule	200
	8.2.	Summ	ary of Earlier Developments	197
	8.1.	Introd	uction	195
8.	тне	PSEU	DOPOTENTIAL THEORY OF MOLECULES	195
	7.4.		Hamiltonians for n-Valence Electron Atoms The Derivation of the Model Hamiltonian, 187	187
			Exact Pseudopotential Theory, 183	
			ntroduction, 177 Ab Initio Theory, 178	
	7.3.	Correlated Wave Function for the Valence Electrons		177

Contents xi

APPENDIX E.	Orthogonality Projection Operators for Many Valence Electrons	276
APPENDIX F.	The Invariance of the Total Wave Function to the Orthogonalization of its Correlated Part	279
APPENDIX G.	The Matrix Components of the Hamiltonian Operator with Respect to Correlated Wave Functions	281
APPENDIX H.	The Derivation of the Equation for the Correlated Pair Function of the Valence Electrons	283
APPENDIX 1.	The Mathematical Properties of the Equation for the Correlated Pair Function	286
APPENDIX J.	Some Mathematical Properties of the Exact Pseudopotential Equation for Two Valence Electrons	291
APPENDIX K.	Maximum Smoothness Pseudo-Orbitals (MSPO's)	295
REFERENCES		302
INDEX		307