<u>.</u>

	Part I	Retrospective
--	--------	---------------

*The Growth of Se A Personal View (With 9 Figures)	econdary Ion Mass Spectrometry (SIMS): of Its Development. By R.E. Honig	2
Part II Fur	Idamentals	
* Density-Function the Ionization Pr By N.D. Lang (W	al Studies of the Atom-Surface Interaction and obability of Sputtered Atoms /ith 3 Figures)	18
Origin of the Che Yield in SIMS. B	mical Enhancement of Positive Secondary Ion y K. Mann and M.L. Yu (With 2 Figures)	26
Ion Pair Producti By C. Plog, G. Ro	on as Main Process of SIMS for Inorganic Solids th, W. Gerhard, and W. Kerfin (With 2 Figures) .	29
* Sputtering and Se Subjected to Oxy By Y. Taga (With	econdary Ion Emission From Metals and Alloys gen Ion Bombardment n 6 Figures)	32
Measurements of By S.A. Schwarz	the SIMS Isotope Effect (With 2 Figures)	38
SIMS Study of Se Isotope Effects. E G. Frohberg, K.H	lf-Diffusion in Liquid Tin and of Associated by U. Södervall, H. Odelius, A. Lodding, . Kraatz, and H. Wever (With 4 Figures)	41
Silicon-Induced E Silicates: A Study By N. Shimizu (W	nhancement of Secondary Ion Emission in 7 of the Matrix Effects Vith 1 Figure)	45
Ionization Probab By M.M. Brudny	ilities of Polycrystalline Metal Surfaces and K.D. Klöppel (With 3 Figures)	48

^{*} Invited Paper

Reactivity and Structure of Sputtered Species By R.B. Freas and J.E. Campana	51
Local Thermal Equilibrium Model of Molecular Secondary Ion Emission. By P.J. Todd	54
Time-of-Flight Investigations of Secondary Ion Emission from Metal Halides. By B. Schueler, R. Beavis, G. Bolbach, W. Ens, D.E. Main, and K.G. Standing (With 3 Figures)	57
Multicharged Secondary Ions from Light Metals (Mg, Al, Si) By JF. Hennequin, RL. Inglebert, and P. Viaris de Lesegno (With 1 Figure)	60
Population of Ion Clusters Sputtered from Metallic Elements with 10 keV Ar ⁺ . By F.G. Satkiewicz (With 1 Figure)	63
Ejection and Ionization Efficiencies in Electron and Ion-Stimulated Desorption from Covalently Bound Surface Structures By T.R. Hayes and J.F. Evans	66

Pa	rt III	Symposium: Detection of Sputtered Neutrals	
* El	ectron G	as SNMS. By H. Oechsner (With 4 Figures)	70
* G]	ow Disch	narge Mass Spectrometry. By W.W. Harrison,	75
K.	R. Hess,	R.K. Marcus, and F.L. King (With 4 Figures)	
* El	ectron B	eam Postionization of Sputtered Neutrals	79
By	7 O. Gan	schow (With 5 Figures)	
* Ge In By	eneral Po tense Un 7 C.H. Be	ecker and K.T. Gillen (With 4 Figures)	85
* M	ulti-Phot	on Resonance Ionization of Emitted Particles	90
By	G.A. So	chick, J.P. Baxter, J. Subbiah-Singh, P.H. Kobrin,	
an	d N. Wii	nograd (With 2 Figures)	
* Po By	st-Ioniza W. Reu	ation of Sputtered Particles: A Brief Review	94
Qu	iantitativ	ve Analysis Using Sputtered Neutrals in an Ion	103
M	croanaly	ser. By P. Williams	
Qu	antitativ	ve Analysis of Iron and Steel by Mass Spectrometry	105
By	J. Dittr	nann, F. Leiber, J. Tümpner, and A. Benninghoven	
(W	/ith 2 Fig	gures)	

Ion Microprobe Mass Spectrometry Using Sputtering Atomizatio and Resonance Ionization By D.L. Donohue, W.H. Christie, and D.E. Goeringer	n 108
Part IV Detection Limits and Quantification	
Memory Effects in Quadrupole SIMS By J.B. Clegg (With 2 Figures)	112
Correction for Residual Gas Background in SIMS Analysis By G.J. Scilla (With 2 Figures)	115
Cross-Calibration of SIMS Instruments for Analysis of Metals and Semiconductors. By F.G. Rüdenauer, W. Steiger, M. Riedel, H.E. Beske, H. Holzbrecher, H. Düsterhöft, M. Gericke, CE. Richter, M. Rieth, M. Trapp, J. Giber, A. Solyom, H. Mai, G. Stingeder, H.W. Werner, and P.R. Boudewijn (With 1 Figure)). 118
On-Line Ion Implantation: The SIMS Primary Ion Beam for Creation of Empirical Quantification Standards By H.E. Smith, M.T. Bernius, and G.H. Morrison (With 1 Figure	e) 121
Matrix Effects in the Quantitative Elemental Analysis of Plastic- Embedded and Ashed Biological Tissue by SIMS By J.T. Brenna and G.H. Morrison	124
Reproducible Quantitative SIMS Analysis of Semiconductors in th Cameca IMS 3F By G.D.T. Spiller and T. Ambridge (With 2 Figures)	he 127
Part V Instrumentation	

* Imaging SIMS at 20 nm Lateral Resolution: Exploratory Research Applications By R. Levi-Setti, G. Crow, and Y.L. Wang (With 5 Figures)	132
Use of a Compact Cs Gun Together with a Liquid Metal Ion Source for High Sensitivity Submicron SIMS By T. Okutani, T. Shinomiya, M. Ohshima, T. Noda, H. Tamura, and H. Watanabe (With 4 Figures)	139
Secondary Ion Mass Spectrometer with Liquid Metal Field Ion Source and Quadrupole Mass Analyzer By J.M. Schroeer and J. Puretz (With 6 Figures)	142
Evaluation of a New Cesium Ion Source for SIMS By D.G. Welkie (With 2 Figures)	146

Survey of Alkali Primary Ion Sources for SIMS By R.T. Lareau and P. Williams	149
Non-Oxygen Negative Primary Ion Beams for Oxygen Isotopic Analysis in Insulators. By R.L. Hervig and P. Williams	152
A New SIMS Instrument: The Cameca IMS 4F By H.N. Migeon, C. Le Pipec, and J.J. Le Goux (With 3 Figures) .	155
The Emission Objective Lens Working as an Electron Mirror: Self Regulated Potential at the Surface of an Insulating Sample By G. Slodzian, M. Chaintreau, and R. Dennebouy (With 2 Figures)	158
20 K-Cryopanel-Equipped SIMS Instrument for Analysis Under Ultrahigh Vacuum. By Y. Homma and Y. Ishii (With 3 Figures)	161
Improvement of an Ion Microprobe Mass Analyzer (IMMA) By K. Miethe and A. Pöcker (With 5 Figures)	164
A High-Performance Analyzing System for SIMS By Cha Liangzhen, Xue Zuqing, Rao Ziqiang, Liu Weihua, and Tong Yuqing (With 3 Figures)	167
Characterization of Electron Multipliers by Charge Distributions By E. Zinner, A.J. Fahey, and K.D. McKeegan (With 4 Figures)	170
Automated Collection of SIMS Data with Energy Dispersive X-Ray Analysis Hardware By D.M. Anderson and E.L. Williams (With 1 Figure)	173
Software and Interfaces for the Automatic Operation of a Quadrupole SIMS Instrument	
By M.G. Dowsett, J.W. Heal, H. Fox, and E.H.C. Parker	176
Computer-Aided Design of Primary and Secondary Ion Optics for a Quadrupole SIMS Instrument. By M.G. Dowsett, R.M. King, H. Fox, and E.H.C. Parker (With 6 Figures)	179
Time-of-Flight Instrumentation for Laser Desorption, Plasma Desorption and Liquid SIMS By R.J. Cotter, J. Honovich, and J. Olthoff (With 3 Figures)	182
Coincidence Measurements with the Manitoba Time-of-Flight Mass Spectrometer. By W. Ens, R. Beavis, G. Bolbach, D.E. Main, B. Schueler, and K.G. Standing (With 4 Figures)	185
High Resolution TOF Secondary Ion Mass Spectrometer By E. Niehuis, T. Heller, H. Feld, and A. Benninghoven (With 2 Figures)	188

Part VI Techniques Closely Related to SIMS

Evaluation of Accelerator-based Secondary Ion Mass Spectrometry for the Ultra-trace Elemental Characterization of Bulk Silicon By R.J. Blattner, J.C. Huneke, M.D. Strathman, R.S. Hockett, W.E. Kieser, L.R. Kilius, J.C. Rucklidge, G.C. Wilson, and A.E. Litherland (With 1 Figure)	192
Quantitative Analysis with Laser Microprobe Mass Spectrometry By R.W. Odom and I.C. Niemeyer (With 1 Figure)	195
Laser-Probe Microanalysis: Aspects of Quantification and Applications in Materials Science By M.J. Southon, A. Harris, V. Kohler, S.J. Mullock, E.R. Wallach, T. Dingle, and B.W. Griffiths (With 2 Figures)	198
Some Aspects of Laser-Ionisation Mass-Analysis (LIMA) in Semiconductor Processing. By M.J. Southon, A. Harris, V. Kohler, and G.D.T. Spiller (With 2 Figures)	201

Part VII Combined Techniques and Surface Studies

The Use of SSIMS and ISS to Examine Pt/TiO ₂ Surfaces By G.B. Hoflund, D.A. Asbury, Shin-Puu Jeng, and P.H. Holloway (With 2 Figures)	206
Secondary lon and Auger Electron Emission by Ar ⁺ Ion Bombardment on Al-Fe Alloys. By Y. Fukuda (With 5 Figures)	210
Characterization of Planar Model Co-Mo $/\gamma$ -Al ₂ O ₃ Catalysts by SIMS, ESCA, and AES By T. Sahin and T.D. Kirkpatrick (With 3 Figures)	213
Search for SiO ₂ in Commercial SiC By A. Adnot, M. Baril, and A. Dufresne (With 6 Figures)	216
SIMS/XPS Studies of Surface Reactions on Rh(111) and Rh(331) By E. White, L.A. DeLouise, and N. Winograd (With 2 Figures)	219
SSIMS - A Powerful Tool for the Characterisation of the Adsorbate State of CO on Metallic and Bimetallic Surfaces By A. Brown and J.C. Vickerman (With 4 Figures)	222
Energy and Angle-Resolved SIMS Studies of Cl ₂ Adsorption on Ag{110}; Evidence for Coverage Dependent Electronic Structure Rearrangements. By D.W. Moon, R.J. Bleiler, C.C. Chang, and N. Winograd (With 5 Figures)	225

XIII

Molecular Secondary Ion Emission from Different Amino Acid Adsorption States on Metals. By D.Holtkamp, M. Kempken, P. Klüsener, and A. Benninghoven (With 4 Figures)	
Part VIII Ion Microscopy and Image Analysis	
A High-Resolution, Single Ion Sensitivity Video System for Secondary Ion Microscopy. By D.P. Leta (With 5 Figures)	32
Dynamic Range Consideration for Digital Secondary Ion Image Depth Profiling By S.R. Bryan, R.W. Linton, and D.P. Griffis (With 4 Figures) 23.	35
Digital Slit Imaging for High-Resolution SIMS Depth Profiling By S.R. Bryan, D.P. Griffis, R.W. Linton, and W.J. Hamilton (With 4 Figures)	39
Lateral Elemental Distributions on a Corroded Aluminum Alloy Surface. By R.L. Crouch, D.H. Wayne, and R.H. Fleming (With 3 Figures)	42
Improved Spatial Resolution of the CAMECA IMS-3fIon Microscope. By M.T. Bernius, Yong-Chien Ling,and G.H. Morrison (With 2 Figures)24	45
Video Tape System for Ion Imaging. By M.G. Moran, J.T. Brenna, and G.H. Morrison (With 3 Figures) 24	49
Application of a Framestore Datasystem in Imaging SIMSBy A.R. Bayly, D.J. Fathers, P. Vohralik, J.M. Walls, A.R. Waugh,and J. Wolstenholme (With 4 Figures)25	53
Chemical Characterisation of Insulating Materials Using High Spatial Resolution SSIMS - An Analysis of the Problems and Possible Solutions. By A. Brown, A.J. Eccles, J.A. van den Berg, and J.C. Vickerman (With 3 Figures)	57
Application of Digital SIMS Imaging to Light Element and Trace Element Mapping. By D. Newbury, D. Bright, D. Williams, C.M. Sung, T. Page, and J. Ness (With 2 Figures)	61
SIMS Imaging of Silicon Defects By R.S. Hockett, D.A. Reed, and D.H. Wayne (With 4 Figures) 26	64

Part IX Depth Profiling and Semiconductor Applications

* Quantitative SIMS Depth Profiling of Semiconductor Materials and Devices. By P.R. Boudewijn and H.W. Werner (With 4 Figures) .. 270

High-Accuracy Depth Profiling in Silicon to Refine SUPREM-III Coefficients for B, P, and As By C.W. Magee and K.G. Amberiadis (With 2 Figures)	279
The Use of Silicon Structures with Rapid Doping Level Transitions to Explore the Limitations of SIMS Depth Profiling By M.G. Dowsett, D.S. McPhail, R.A.A. Kubiak, and E.H.C. Parker (With 4 Figures)	282
Temperature Dependent Broadening Effects in Oxygen SIMS Depth Profiling. By F. Schulte and M. Maier (With 2 Figures)	285
Sputter-Induced Segregation of As in Si During SIMS Depth Profiling. By W. Vandervorst, J. Remmerie, F.R. Shepherd, and M.L. Swanson (With 3 Figures)	288
SIMS Measurements of As at the SiO ₂ /Si Interface By C.M. Loxton, J.E. Baker, A.E.Morgan, and TY. J. Chen (With 3 Figures)	291
Elimination of Ion-Bombardment Induced Artefacts in Compound Identification During Thin Film Analysis: Detection of Interface Carbides in "Diamond-Like" Carbon Films on Silicon By P. Sander, U. Kaiser, O. Ganschow, and A. Benninghoven (With 6 Figures)	295
Gibbsian Segregation During the Depth Profiling of Copper in Silicon. By V.R. Deline, W. Reuter, and R. Kelly (With 1 Figure)	299
Species-Specific Modification of Depth Resolution in Sputtering Depth Profiles by Oxygen Adsorption By S.M. Hues and P. Williams (With 1 Figure)	303
Selective Sputtering and Ion Beam Mixing Effects on SIMS Depth Profiles. By E. Lidzbarski and J.D. Brown (With 3 Figures)	306
The Effect of Temperature on Beam-Induced Broadening in SIMS Depth Profiling. By S.D. Littlewood and J.A. Kilner (With 2 Figures)	310
Variable Angle SIMS. By J.G. Newman (With 3 Figures)	313
Dependence of Sputter Induced Broadening on the Incident Angle of the Primary Ion Beam By H. Frenzel, E. Frenzel, and P. Davies (With 2 Figures)	316
SIMS Depth Profiling with Oblique Primary Beam Incidence By R. v. Criegern and I. Weitzel (With 5 Figures)	319

Deterioration of Depth Resolution in Sputter Depth Profiling by Raster Scanning an Ion Beam at Oblique Incidence and Constant Slew Rate. By U. Kaiser, R. Jede, P. Sander, H.J. Schmidt, O. Ganschow, and A. Benninghoven (With 4 Figures)	323
SIMS Analysis of Contamination Due to Ion Implantation By F.A. Stevie, M.J. Kelly, J.M. Andrews, and W. Rumble (With 5 Figures)	327
Analysis of Surface Contamination from Chemical Cleaning and Ion Implantation. By G.J. Slusser (With 1 Figure)	331
Quantification of SIMS Dopant Profiles in High-Dose Oxygen- Implanted Silicon, Using a Simple Two-Matrix Model By G.D.T. Spiller and J.R. Davis (With 3 Figures)	334
Isotope Tracer Studies Using SIMS. By J.A. Kilner, R.J. Chater, and P.L.F. Hemment (With 2 Figures)	337
High Dynamic Range SIMS Depth Profiles for Aluminium in Silicon-on-Sapphire. By M.G. Dowsett, E.H.C. Parker, and D.S. McPhail (With 3 Figures)	340
Charge Compensation During SIMS Depth Profiling of Multilayer Structures Containing Resistive and Insulating Layers By D.S. McPhail, M.G. Dowsett, and E.H.C. Parker (With 4 Figures)	343
Ion Deposition Effects in and Around Sputter Craters Formed by Cesium Primary Ions By K. Miethe, W.H. Gries, and A. Pöcker (With 4 Figures)	347
SIMS Depth Profiling of Si in GaAs By F.R. Shepherd, W. Vandervorst, W.M. Lau, W.H. Robinson, and A.J. SpringThorpe (With 6 Figures)	350
High Purity III-V Compound Analyses by Modified CAMECA IMS 3F. By A.M. Huber and G. Morillot (With 4 Figures)	353
Depth Profiling of Dopants in Aluminum Gallium Arsenide By W.H. Robinson and J.D.Brown (With 4 Figures)	357
Depth Resolution in Profiling of Thin GaAs-GaAlAs Layers By J. Gavrilovic (With 1 Figure)	360
Elemental Quantification Through Thin Films and Interfaces By A.A. Galuska and N. Marquez (With 4 Figures)	363
Matrix Effect Quantification for Positive SIMS Depth Profiling of Dopants in InP/InGaAsP/InGaAs Epitaxial Heterostructures By W.C. Dautremont-Smith (With 3 Figures)	366

A Comparison of Electron-Gas SNMS, RBS and AES for the Quantitative Depth Profiling of Microscopically Modulated Thin Films. By H. Oechsner, G. Bachmann, P. Beckmann, M. Kopnarski, D.A. Reed, S.M. Baumann, S.D. Wilson, and C.A. Evans, Jr.	
(With 3 Figures)	371
Characterization of Silicides by the Energy Distribution of Molecular Ions	
By K. Okuno, F. Soeda, and A. Ishitani (With 2 Figures)	374
Investigation of Interfaces in a Ni/Cr Multilayer Film with Secondary Ion Mass Spectrometry. By M. Moens, F.C. Adams, D.S. Simons, and D.E. Newbury (With 2 Figures)	377
Sputter Depth Profiles in an Al-Cr Multilayer Sample By D. Marton and J. László (With 3 Figures)	380
SIMS Depth Profiling of Multilayer Metal-Oxide Thin Films – Improved Accuracy Using a Xenon Primary Beam By D.D. Johnston, N.S. McIntyre, W.J. Chauvin, W.M. Lau, K. Nietering, and D. Schuetzle (With 1 Figure)	384
By D. Marton and J. László (With 3 Figures) SIMS Depth Profiling of Multilayer Metal-Oxide Thin Films – Improved Accuracy Using a Xenon Primary Beam By D.D. Johnston, N.S. McIntyre, W.J. Chauvin, W.M. Lau, K. Nietering, and D. Schuetzle (With 1 Figure)	380 384

Part X Metallurgical Applications

*	Metallurgical Applications of SIMS. By F. Degrève and J.M. Lang	388
	Sputtering of Au-Cu Thin Film Alloys By T. Koshikawa and K. Goto (With 3 Figures)	394
	Hydrogen Profiling in Titanium By R. Bastasz (With 1 Figure)	397
	The Application of SIMS and Other Techniques to Study the Anodized Surface of a Magnesium Alloy By S. Fukushi and M. Takaya (With 6 Figures)	400
	Incorporation of Chromium in Sputtered Copper Films and Its Removal During Wet Chemical Etching By R.J. Day, M.S. Waters, and J. Rasile (With 1 Figure)	403
	Application of SIMS to the Study of a Corrosion Process – Oxidation of Uranium by Water By S.S. Cristy and J.B. Condon (With 5 Figures)	405
	SIMS Trace Detection of Heavy Elements in High-Speed Rotors By J.C. Keith, M.I. Mora, O. Olea, and J.L. Peña (With 3 Figures)	409

	Quantitative Analysis of Zn-Fe Alloy Electrodeposit on Steel by Secondary Ion Mass Spectrometry By T. Suzuki, Y. Ohashi, and K. Tsunoyama (With 4 Figures)	412
	SIMS Analysis of Zn-Fe Alloy Galvanized Layer. By K. Takimoto, K. Suzuki, K. Nishizaka, and T. Ohtsubo (With 4 Figures)	415
	Part XI Biological Applications	
*	Biological Microanalysis Using SIMS – A Review By R.W. Linton	420
	Observations Concerning the Existence of Matrix Effects in SIMS Analysis of Biological Specimens. By M.S. Burns	426
	lon Microanalysis of Frozen-Hydrated Cultured Cells By S. Chandra, M.T. Bernius, and G.H. Morrison (With 1 Figure)	429
	Imaging Intracellular Elemental Distribution and Ion Fluxes in Cryofractured, Freeze-Dried Cultured Cells Using Ion Microscopy By S. Chandra and G.H. Morrison (With 1 Figure)	432
	Cellular Microlocalization of Mineral Elements by Ion Microscopy in Organisms of the Pacific Ocean. By C. Chassard-Bouchaud, P. Galle, and F. Escaig (With 4 Figures)	435
	Quantitative SIMS of Prehistoric Teeth. By P. Fischer, J. Norén, A. Lodding, and H. Odelius (With 2 Figures)	438
	Part XII Geological Applications	
	Ion Probe Determination of the Abundances of all the Rare Earth	

Ion Probe Determination of the Abundances of all the Rare Earth Elements in Single Mineral Grains By E. Zinner and G. Crozaz (With 2 Figures)	444
Ion Microprobe Studies of the Magnesium Isotopic Abundance in Allende and Antarctic Meteorites By J. Okano and H. Nishimura (With 3 Figures)	447
Rock and Mineral Analysis by Accelerator Mass Spectrometry By J.C. Rucklidge, G.C. Wilson, L.R. Kilius, and A.E. Litherland (With 2 Figures)	451

Part XIII Symposium: Particle-Induced Emission from Organics

* Organic Secondary Ion Mass Spectrometry: Theory, Technique	e,
and Application. By R.J. Colton (With 4 Figures)	456

* Mechanisms of Organic Molecule Ejection in SIMS and FABMS By D.W. Brenner and B.J. Garrison	5 462
* A Thermodynamic Description of 252-Cf-Plasma Desorption By R.D. Macfarlane	467
* Laser Desorption Mass Spectrometry. A Review By F. Hillenkamp (With 1 Figure)	471
*Time-of-Flight Measurements in Secondary Ion Mass Spectrom By K.G. Standing, R. Beavis, G. Bolbach, W. Ens, D.E. Main, and B. Schueler	etry 476
 * Fast Atom Bombardment Mass Spectrometry of Biomolecules By K.L. Rinehart, Jr., J.C. Cook, J.G. Stroh, M.E.Hemling, G. Gäde, M.H. Schaffer, and M. Suzuki (With 1 Figure) 	480
 * Solid Sample-SIMS on Biomolecules with Fast Ion Beams from Uppsala EN-Tandem Accelerator By B. Sundqvist, A. Hedin, P. Håkansson, M. Salehpour, G. Sä S. Widdiyasekera, and R.E.Johnson (With 3 Figures) 	the 484
* Fourier Transform Mass Spectrometry for High Mass Application By M.E. Castro, L.M. Mallis, and D.H. Russell (With 3 Figure	ons s) 488

Part XIV Organic Applications Including Fast Atom Bombardment Mass Spectrometry

Energy Distribution of Secondary Organic Ions Emitted by Amino Acids. By L. Kelner and T.C. Patel	494
Analytical Application of a High Performance TOF-SIMS By A. Benninghoven, E. Niehuis, D. Greifendorf, D. van Leyen, and W. Lange (With 2 Figures)	497
Organic Secondary Ion Intensity and Analyte Concentration By P.J. Todd and C.P. Leibman (With 2 Figures)	500
Characteristics of Ion Emission in Desorption Ionization Mass Spectrometry. By M.M. Ross, J.E. Campana, R.J. Colton, and D.A. Kidwell (With 3 Figures)	503
Some Aspects of the Chemistry of Ionic Organo-Alkali Metal Halide Clusters Formed by Desorption Ionization By L.M. Mallis, M.E. Castro, and D.H. Russell (With 2 Figures)	506
Detection of Biomolecules by Derivatization/SIMS By D.A. Kidwell, M.M. Ross, and R.J. Colton (With 5 Figures)	509

Solvent Selection and Modification for FAB Mass Spectrometry By K.L. Busch, K.J. Kroha, R.A. Flurer, and G.C. DiDonato (With 1 Figure)	512
The Use of Negative Ion Fast Atom Bombardment Mass Spectrometry for the Detection of Esterified Fatty Acids in Biomolecules. By W.M. Bone and C. Seid (With 3 Figures)	515
Fast-Atom Bombardment Mass Spectra of O-Isopropyl Oligodeoxyribonucleotide Triesters. By L.R. Phillips, K.A. Gallo, G. Zon, W.J. Stec, and B. Uznanski (With 2 Figures)	518
Characterization of Biomolecules by Fast Atom Bombardment Mass Spectrometry. By S.A. Martin, C.E. Costello, K. Biemann, and E. Kubota (With 1 Figure)	521
Application of Fast Atom Bombardment and Tandem Mass Spectrometry to the Differentiation of Isomeric Molecules of Biological Interest. By C. Guenat and S. Gaskell (With 2 Figures)	524
Fragmentation of Heavy Ions (5000 to 7000 Daltons) Generated by PD and FAB. By P. Demirev, M. Alai, R. van Breemen, R. Cotter, and C. Fenselau (With 2 Figures)	527
Amino Acid Sequencing of Norwegian Fresh Water Blue- Green Algal (Microcystis Aeruginosa) Peptide by FAB-MS/MS Technique. By T. Krishnamurthy, L. Szafraniec, E.W. Sarver, D.F. Hunt, S. Missler, and W.W. Carmichael (With 2 Figures)	531
Static SIMS Studies of Molecular and Macromolecular Surfaces: Ion Formation Studies. By J.A. Gardella, Jr., J.H. Wandass, P.A. Cornelio, and R.L. Schmitt	534
TOF-SIMS of Polymers in the Range of $M/Z = 500$ to 5000 By I.V. Bletsos, D.M. Hercules, A. Benninghoven, and D. Greifendorf (With 2 Figures)	538
Secondary Ion Mass Spectrometry of Modified Polymer Films By S.J. Simko, R.W. Linton, R.W. Murray, S.R. Bryan, and D.P. Griffis (With 3 Figures)	542
Application of SIMS Technique to Industrially Used Organic Materials. By S. Tomita, K. Okuno, F. Soeda, and A. Ishitani (With 7 Figures)	545
Empirical Study of Primary Ion Energy Compared with the Abundance of Polymer Fragment Ions By T. Adachi, M. Yasutake, and K. Iwasaki (With 3 Figures)	548

Comparison of Laser Mass Spectra Obtained at Ambient	
Conditions vs. Sample Freezing By J.J. Morelli, F.P. Novak, and D.M. Hercules (With 1 Figure)	551
Surface Analysis by Laser Desorption of Neutral Molecules with Fourier Transform Mass Spectrometry Detection By R.T. McIver, Jr., M.G. Sherman, D.P. Land, J.R. Kingsley,	
and J.C.Hemminger (With 1 Figure)	555
Index of Contributors	559