·

Contents

1.	Intro	oductio	n	1								
2.	General Formulation of Scattering Problem Under Quasi-											
	Classical Conditions											
	2.1	Scatte	ring Amplitudes and Cross Sections	6								
		2.1.1	Representations of Amplitudes and Cross Sections.	6								
		2.1.2	Scattering Amplitudes and Cross Sections Under									
			Quasi-Classical Conditions	14								
	2.2	Scatte	ring Equations	22								
		2.2.1	Atomic Basis	22								
		2.2.2	Molecular Basis	26								
	2.3	Collis	ions of Two Many-Electron Atoms	34								
		2.3.1	Scattering Matrix and Scattering Equations	34								
		2.3.2	Collisions of Identical Atoms	41								
	2.4	Integr	al Cross Sections for Isotropic Collisions	43								
3.	Diat	tomic E	lectronic States	53								
	3.1	Quant	tum Numbers and Wave Functions of a Free Atom.	53								
	3.2	Quant	tum Numbers and Wave Functions of Diatoms	59								
		3.2.1	General Classification of Adiabatic Diatomic									
			States	59								
		3.2.2	Wave Functions of a Diatom at Large Internuclear									
			Separations	62								
		3.2.3	Molecular-Orbital Approximation	68								
	3.3	Adiab	patic States, Diabatic States, and Correlation									
		Diagr	ams	74								
		3.3.1	The Noncrossing Rule and Adiabatic Correlation									
			Diagrams	74								
		3.3.2	Diabatic States and Diabatic Correlation									
			Diagrams	78								
		3.3.3	One-Electron Correlation Diagrams	85								
	3.4	Coupl	ling Between Electronic States. Selection Rules	98								
4.	Арр	roxima	te Calculation of the Electronic States of Diatoms	103								
	4.1	Atom	ic Potential and Atomic Orbitals	103								

		4.1.1	Hartree-Fock Screening Function and Atomic Orbitals	. 103
		4.1.2	The Pseudopotential Method for Valence	100
	12	Diato	Electrons of Atoms	. 109
	4.2	Diator	r London Approximation	113
		1 2 1	Effective Hamiltonian	111
		4.2.1	Coulomb Interaction	117
		4.2.2	Dispersion Interaction	120
		4.2.5	Explange Interaction	120
	12	4.2.4 Decud	exchange interaction	125
	4.5	1 2 1	The Model Potential Method	127
		4.3.1	Multiple Scattering Method	1/1
	11	4.5.2 Short	Range Atomic Interactions	1/19
	4.4	511011-	The Energy of Atomic Interaction of Small	. 140
		4.4.1	Distances	150
		442	Electronic Detential in a Distor at Small P	154
	15	4.4.2 Coupl	ing Potween Electronic States	159
	4.3		Spin Orbit Coupling	150
		4.5.1	Padial Coupling in the Avoided Crossing Region	162
		4.3.2	Radial Coupling in the Avoided Crossing Region	. 102
5.	Elas	tic Scat	ttering	. 167
	5.1	Quasi-	Classical Scattering Amplitude	. 167
	5.2	Quasi-	Classical Scattering Matrix	. 170
		5.2.1	JWKB Scattering Phase Shifts	. 171
		5.2.2	Violation of Quasi-Classical Conditions in	
			Localized Regions. Connection Problem	. 173
		5.2.3	Isolated Turning Point	. 176
		5.2.4	Two Close Turning Points	. 179
	5.3	Classi	cal Scattering	. 186
	5.4	Integr	al Cross Sections	. 191
	5.5	Differ	ential Cross Sections	. 195
		5.5.1	Scattering Through Classical Angles-Repulsive	
			Potential	. 195
		5.5.2	Scattering Through Classical Angles-Potential	
			with a Well	. 196
		5.5.3	Scattering Through Small Angles	. 199
6	Ann	ovima	te Calculation of a Multichannel Quasi-Classical	
0.	Scat	tering I	Matrix	202
	Scat	G		. 202
	61	('omm	ion-Trajectory Approach	202
	6. I	Comn	non-Trajectory Approach	. 202 204

		6.1.2 Eikonal and Impact-Parameter Approximations		209
		6.1.3 Semiclassical Limit of the Quasi-Classical		
		Approximation	•	214
	6.2	Matching Approach	•	222
		6.2.1 Matching Solution of Scattering Equations		222
		6.2.2 Near-Adiabatic Matching	•	229
		6.2.3 Near-Sudden Matching	•	234
	6.3	Perturbation Approach		237
		6.3.1 First-Order Perturbation Treatment. The Born		
		and Adiabatic Distorted-Wave Approximations.		237
		6.3.2 Unitarized Distorted-Wave Approximation	•	240
7.	Two	-State Scattering Problem		243
	7.1	The Two-State Model. Adiabatic and Diabatic		
		Representations	•••	243
	7.2	Construction of the Two-State Quasi-Classical S Matrix		
		by the Matching Method		248
	7.3	Two-State Semiclassical Models		254
		7.3.1 Derivation of Semiclassical Equations		254
		7.3.2 Classification of Semiclassical Two-State Models		258
		7.3.3 Approximate Two-State Transition Probabilities		262
	7.4	Differential Cross Sections and Deflection Functions .	•	266
0	The	Linear Two State London Zoner Model		272
	1 110	Linear Two-State Lanuau-Zener Would		413
0.	Q 1	Formulation of the Model	•	272
0.	8.1	Formulation of the Model	•	273
0.	8.1 8.2	Formulation of the Model	•	273
0.	8.1 8.2	Formulation of the Model		273 276
0.	8.1 8.2 8.3	Formulation of the Model		273 276 280
0.	8.1 8.2 8.3	Formulation of the Model		273 276 280 280
0.	8.18.28.3	Formulation of the Model		273 276 280 280 284
0.	8.18.28.38.4	Formulation of the Model	· · · · · ·	273 276 280 280 284
0.	8.18.28.38.4	Formulation of the Model	· · · · · ·	273 276 280 280 284 288
0.	 8.1 8.2 8.3 8.4 8.5 	Formulation of the Model	· · · · · · · ·	273 276 280 280 284 288 292
0.	 8.1 8.2 8.3 8.4 8.5 	Formulation of the Model		273 276 280 280 284 288 292 292
0.	8.18.28.38.48.5	Formulation of the Model		273 276 280 280 284 288 292 292 300
0.	8.18.28.38.48.5	Formulation of the Model		273 276 280 280 284 288 292 292 300 302
9.	 8.1 8.2 8.3 8.4 8.5 	Formulation of the Model		273 276 280 280 284 288 292 292 300 302 313
9.	 8.1 8.2 8.3 8.4 8.5 Non 9.1	Formulation of the Model		273 276 280 280 284 288 292 292 300 302 313 314
9.	 8.1 8.2 8.3 8.4 8.5 Non 9.1 	Formulation of the Model		273 276 280 280 284 288 292 292 300 302 313 314 314

		9.1.3	Specific Cases of the Exponential Model		
			Probabilities and Cross Sections	. 32	22
	9.2	Linear	Exponential Model	. 32	27
		9.2.1	Formulation of the Model	. 32	27
		9.2.2	Transition Probabilities and Cross Sections	. 32	29
	9.3	Other	Nonlinear Models	. 33	32
		9.3.1	Hypergeometric Models	. 33	33
		9.3.2	Power Models – Large Interatomic Separations	. 37	34
		9.3.3	Power Models – Small Interatomic Separations .	. 33	37
10.	Mult	tistate I	Models of Nonadiabatic Coupling	. 34	40
	10.1	Transi	tions Between Degenerate States	. 34	40
		10.1.1	Collisional Depolarization of an Isolated Atomic		
			State	. 34	40
		10.1.2	Resonant Excitation Transfer by Dipole-Dipole		
			Interaction	. 34	48
		10.1.3	Transitions Between Degenerate Hydrogen States		
			in Collisions with Ions	. 35	51
	10.2	Transi	tions Between Highly Excited States	. 35	55
	10.3	Gener	alizations of the Linear Model	. 35	59
		10.3.1	Interaction of a Diabatic Term with a Set of		
			Parallel Diabatic Terms and a Continuum	. 3.	59
		10.3.2	Nonadiabatic Coupling Between Two Quasi-		
			Stationary States	. 36	54
11.	Case	Study	– Intramultiplet Mixing and Depolarization of		
	Alka	lis in C	Collisions with Noble Gases	. 36	56
	11.1	Form	lation of the $M^* - X$ Scattering Problem	. 36	57
		11.1.1	Scattering Equations and Couplings	. 36	57
		11.1.2	$M^* - X$ Interaction	. 37	71
	11.2	The So	cattering Matrix	. 37	75
		11.2.1	Matching Approximation	. 37	75
		11.2.2	Semiclassical Comparison Equations	. 37	79
		11.2.3	Scattering Matrix for ${}^{2}P_{1/2}$ Substate	. 38	34
	11.3	Transi	tion Probabilities and Cross Sections for		
		Isotro	pic Collisions	. 38	37
		11.3.1	Intramultiplet Mixing	. 38	37
		11.3.2	Reorientation in the ${}^{2}P_{1/2}$ Substate	. 39) 2
Ap	pendix	x		. 39	9 5
	Α.	Quant	um Theory of Angular Momentum	. 39	95
		A.1	Rotation Matrices and Spherical Functions	. 39	9 5

A.2	Co	oup	lin	g (of te	A	ngi d (ula	r)	M ;	on Sv	ner ml	ita	, (Ic	Cle	bs	ch	-G	ioi	da	ın		200
A.3	M	Matrix Elements of the Irreducible Tensor													390								
	Oj	pera	ato	rs	·		٠	•	·	•	·		•	٠	•	•	•	·	•	•	•		401
References	•		•			·						•	•	•	•	٠	•	•		•	·	•	403
Subject Index	•	• •			•	•	٠	٠	•			•			•	•		•			•		427