	*	

CONTENTS

Chapter 1. Atomic Processes in Thermonuclear Fusion	
Plasmas	1
R. K. Janev	
1. Introduction	1
2. Atomic Processes in the Central Plasma Region	7
3. Atomic Processes in the Edge Plasma	31
4. Summary and Outlook	56
References	58
Additional Reading	59
Chapter 2. Atomic and Molecular Processes in	20°C 3350
Muon-Catalyzed Fusion	61
J. S. Cohen	22
1. Introduction	61
2. Overview	64
3. Muonic Atom Formation	69
4. Muonic Atom Collisions	75
5. Muonic Molecules	84
6. Fusion in Muonic Molecules	95 97
7. Muon Loss	102
8. Energy Balance	102
Acknowledgements	103
Appendix: Scaling from Normal to Muonic Atoms and Molecules	103
References	106
Additional Reading	100
_	100
Chapter 3. Progress in Atomic Collisions with Multiply	111
Charged Ions	111
C. L. Cocke 1. Physical Setting	111
2. Tools Available	112
3. Low Energy Collisions: Outer Shell Processes	120
4. Electron-Ion Collisions	138
5. Concluding Comments	161
References	161
Chapter 4. Cooler Storage Rings: New Tools for Atomic	
Physics	169
R. Schuch	
1. Introduction	169
2. Principles of Ion-Storage Rings	171
3. Beam Cooling Techniques	175
4. Cooled Stored Ion Beams	182

	5. Stored Beam Lifetime and Related Experiments	191
	6. Collisions between Electrons and Stored Ions	196
	References	209
Chapter 5.	Atomic Collisions with Laser Excited Targets N. Andersen	213
	1. Introduction	213
	2. General Symmetry Considerations	215
	3. The Case of $S \to P$ Excitation	218
	4. Charge Transfer Processes	223
	5. Perspective	235
	${f Acknowledgements}$	235
	References	235
	Suggestions for Further Reading	236
Chapter 6.	Progress in Atomic Collision Theory: The Semiclassical Close-Coupling Model and the	
	Physics it Describes	239
	W. Fritsch	
	1. Introduction	239
	2. Simple Models for Atomic Transitions	241
	3. Close-Coupling Theory for One-Electron Systems	244
	4. Examples of Studies within the One-Electron	
	Model	253
	5. Treatment of Two-Electron Systems	271
	6. Concluding Remarks	279
	References	280
	Suggested Readings	281
Chapter 7.	Recent Progress in Atomic Photoionization wi	
	Synchrotron Radiation	283
	F. Wuilleumier	
	1. Introduction	283
	2. Theoretical Considerations	286
	3. Major Progress in Experiments	293
	4. Correlation Effects in Single Photoionization	300
	5. Two-Electron Excited States	307
	6. Simultaneous Photoexcitation and	010
	Photoionization (ϵ, \mathbf{n}) Processes	319
	7. Double Photoionization (ϵ, ϵ) Processes	331
	8. Conclusions	346
	Acknowledgements	347
	References	347

Chapter 8	Classifications and Properties of Doubly Excited		
	States of Atoms	357	
	C. D. Lin		
	1. Introduction	357	
	2. Classification of Doubly Excited States	359	
	3. Experimental Studies of Doubly Excited States	362	
	4. Classification Schemes of Doubly Excited States	371	
	5. Order and Regularity in Energy Levels,		
	Radiative and Autoionization Rates	380	
	6. Computational Methods	390	
	7. Related Problems and Future Perspective	396	
	References	399	
Chapter 9	9. Atomic and Molecular Multiphoton Processes	in	
	Intense Laser Fields	403	
	S. I. Chu		
	1. Introduction	403	
	2. Time-Independent Approaches to Intense Field		
	Multiphoton Processes: Floquet and Generalized		
	Floquet Formalisms	404	
	3. Applications of Time-Independent Floquet		
	Theoretical Approaches to Atomic and		
	Molecular Multiphoton Processes	415	
	4. Time-Dependent Approaches to Atomic and		
	Molecular Multiphoton Processes	432	
	5. Recent Progress on Multiphoton Processes		
	Induced by Intense Short Laser Pulse Fields	433	
	Acknowledgement	437	
	References	438	
	Suggestions for Further Reading	440	
Chapter 1	0. Atoms in Static Electric and Magnetic Fields	441	
	S. Watanabe		
	1. Introduction	441	
	2. The Non-Relativistic Hamiltonian and		
	Preliminary Remarks	446	
	3. Low-Energy Spectra	448	
	4. Intermediate to High Energy Spectra	461	
	5. Quantum-Classical Correspondence in		
	Intermediate to High Energy Region	487	
	6. Outlook and Conclusion	504	
	Acknowledgements	506	
	Appendix	507	
	References	510	

xii Contents

Chapter 11.	Atomic Collisions with Surfaces	517
•	J. Burgdörfer	
	1. Introduction	517
	2. Interaction Potentials	520
	3. Trajectories	542
	4. Electron Transfer in Ion-Surface Scattering	554
	5. Interaction of Highly Charged Ions with Surfaces	582
	6. Further Reading	608
	Acknowledgments	609
	References	610