Contents

Notes on Symbolic Consistency, xxi Book and Review References, xxiii

CHAPTER 1 STATISTICS AND SPECTRA

List of Symbols, 1

	Dist of C	J. 112 O 20 , X
1.1 1.2 1.3 1.4	100 G 100 See 100 100	*
	1.4.1	Classical Definition, 26
	1.4.2	Relative Frequency Definition, 26
	1.4.3	Conditional Probability, 26
	1.4.4	Random Variables—A Physical Analogy, 27
	1.4.5	Probability and Distribution Functions, 28
	1.4.6	Continuous Distributions, 31
	1.4.7	Two-Dimensional Continuous Distributions, 32
	1.4.8	The Normal (Gaussian) Distribution, 34
	1.4.9	Moment Generating and Spectral Functions, 35
	1.4.10	Higher Moments of the Gaussian
		Distribution, 37
	1.4.11	The Central Limit Theorem, 37
	1.4.12	Covariance and Autocorrelation Functions, 37
	1.4.13	The Multidimensional Normal Distribution, 38

1.5 Stochastic Processes, 39

- 1.5.1 The Chapman/Kolmogorov and Smoluchowski Equations, 41
- 1.5.2 Probability Density Diffusion Equations, 41
- 1.5.3 The Wiener Process and Wiener Algebra, 44

1.6 Classical Brownian Theory, 46

- 1.6.1 Interpretation of the Langevin Equation, 47
- 1.6.2 The Properties of B(t), 48
- 1.6.3 Wiener Integrals, 49
- 1.6.4 The Kramers, Fokker-Planck, and Liouville Equations, 50

1

1.7	The Lie	ouville Equation—Non-Markovian Processes, 55
	1.7.1	Projection Operators, 57
	1.7.2	The Memory Function and the Kubo Theorem
		of Fluctuation-Dissipation. Non-Markovian
		Processes, 61
	1.7.3	Mode-Mode Coupling, Single and Multimolecule
	1.7.4	Motions, 62
	1.7.4	The Continued Fraction Theorem— Thermodynamic-Equilibrium Averages, 63
1 0	Cmaatma	
1.8	Functio	l Moments, Autocorrelation, and Memory ns, 69
	1.8.1	Time Fourier Transforms—Spectral
		Moments, 71
	1.8.2	The Correlation Function in Quantum
		Mechanics: Detailed Balancing, 73
	1.8.3	Memory Functions—Series Expansion, 75
1.9		tion of Equilibrium Averages in Classical
		nics—Sum Rules for Spectral Analysis, 76
	1.9.1	Angular Momentum Autocorrelation
	1.9.2	Function, 76 Moments of the Orientational Autocorrelation
	1.7.2	Function, 78
	1.9.3	Sum Rules, 80
	Referen	ces, 81
OII A DOWN	D • 140	
CHAPTE		DELS FOR THE TRANSLATIONAL AND OTION OF MOLECULES
Ballet - 2007		ymbols, 83
2.1	Introduc	*
	2.1.1	Solutions of the Smoluchowski Equation, 84
	2.1.2	Solution of the Smoluchowski Equation in the
2.2	C-1-4	Presence of an External Potential, 87
2.2 2.3		of the Fokker–Planck Equation, 91 s of the Kramers Equation, 94
2.4	Review	of Brinkman's Procedure for the Solution of
	Kramers	Equation, 97
	2.4.1	Brinkman's Method of Solving
		Equations 2.4.6, 100
	2.4.2	The Method of Risken and Vollmer, 104
2.5	Criticism	s of the Brinkman Procedure, 111

83

2.6	Rotational Brownian Movement Based on the	e
	Smoluchowski Equation, 112	

- 2.6.1 Rotational Brownian Movement about a Fixed Axis, 112
- 2.6.2 Rotational Brownian Movement in Space Based on the Smoluchowski Equation, 116
- 2.6.3 Linear Response Theory, 118

2.7 Breakdown of the Debye Theory at High Frequencies, 120

- 2.7.1 Sack's Treatment of Inertial Effects, 122
- 2.8 Free Rotation in Space, 129
- 2.9 The Rotational Brownian Movement of the Sphere and Needle, 132
- 2.10 The Rotational Brownian Movement of Nonspherical Bodies. Evaluation of Angular Velocity Correlation Functions, 142
 - 2.10.1 Calculation of the Aftereffect Functions, 145

2.11 Free Rotational Models Under the Influence of Large External Fields, 150

- 2.11.1 The Debye Theory for Large Fields, 151
- 2.12 The Generalized Langevin Equation—Memory Effects, 155
- 2.13 Multidimensional Markov Equation for Angular Velocity, 160
 - 2.13.1 Physical Models, 161
- 2.14 Extended Diffusion or Collision Interrupted Rotation, 163
- 2.15 Free Rotation, 165

Appendix: The Euler Angles (by Mauro Ferrario), 167 References, 172

CHAPTER 3 THE RELATION OF MOLECULAR MOTION TO SPECTRAL BANDSHAPES: ELECTRICAL INTERACTIONS

175

List of Symbols, 175

- 3.1 Debye's Theory, 176
 - 3.1.1 The Influence of an Imposed Potential Gradient on a Dipolar Molecule, 176
 - 3.1.2 The Lorenz-Lorentz Relation, 177
 - 3.1.3 Derivation of Debye's Equation, 178
 - 3.1.4 Onsager's Theory of the Relative Permittivity of Dipolar Fluids, 181

	3.1.5	The Cavity Field, 182
	3.1.6	Derivation of the Onsager Formula, 182
	3.1.7	The Consistency of Onsager's Equation, 185
	3.1.8	Kirkwood's Formula, 186
3.2	Fröhlic	h's Theory, 187
	3.2.1	Fröhlich's Treatment of Displacement
		Polarization, 189
	3.2.2	A Test of the Consistency of Fröhlich's
	2.2.2	Equation (3.2.1.13), 192
	3.2.3	Evaluation of $\langle M^2 \rangle$, 194
	3.2.4	The Kirkwood-Fröhlich Equation, 198
	3.2.5	Derivation of the Kirkwood–Fröhlich Equation, 198
3.3	The Fre	equency Dependence of the Permittivity, 199
	3.3.1	The Fluctuation-Dissipation Theorem, 200
	3.3.2	Generalization of Fröhlich's Equations to the
		Frequency Dependent Case, 202
	3.3.3	Debye Type Theories, 203
3.4	The Int	ernal Field, 206
	3.4.1	Frequency Dependence in Onsager Model, 208
	3.4.2	The Relation Between the $\mathfrak{A}(\omega)$ and $\epsilon''(\omega)$ from
		the Debye Theory, 211
	3.4.3	An Approximate Expression for g in Terms of the Absorption Coefficient, 212
	3.4.4	Collective Motions and Computer
		Simulations, 213
	3.4.5	Dipole-Dipole Coupling and Far
		Infrared Spectroscopy, 232
	3.4.6	Dipole–Dipole Correlation in Liquid Water—
		Molecular Dynamics Simulation, 234
	3.4.7	Dielectric Friction, 242
3.5	Macro-	Micro Correlation Theorems, 242
	3.5.1	Relations of $C_{\rm M}^{(11)}$ and $C_{\rm u}^{(11)}(t)$, 247
3.6	Evaluati	ion in the Far Infrared, 257
	3.6.1	Molecular Motion in the Gas, 259
	3.6.2	The Dense Dipolar Liquids, 263
	Appendi	ix: Molecular Dynamics and the Internal Field Problem, 264
	Referen	ces, 266

СНАРТЕ	R 4 EV	ALUATION OF MODELS IN THE FAR INFRARED	269
	List of	Symbols, 269	
4.1 4.2	_	ound, 271 rison with Data, 276	
	4.2.1 4.2.2	Qualitative Description of the Data, 277 Molecular Description of the Above	
	4.2.3	Equations, 310 Band Shape Analysis in the Far Infrared and Microwave, 321	
	4.2.4	Conclusions and Intensity Analysis, 330	
4.3	Debye 1	Relaxation Times, 334	
		lix A: Fitting Mori Theory to Experimental Data, 336	
		lix B: Volume of Rotation, 341	
	Keierei	nces, 343	
CHAPTE TRANSL		E INTERACTION OF ROTATION WITH	345
	List of	Symbols, 345	
5.1	Long T	ime Tails, 347	
	5.1.1	Viscoelastic Theory of the Angular Velocity Autocorrelation Function, 353	
	5.1.2	Shear Waves and Viscoelasticity, 357	
5.2	Transla	tion/Rotation on the Molecular Scale, 360	
	5.2.1 5.2.2	Linear Diatomics, 360 Rototranslation of Loaded Rough Spheres, 367	
	5.2.3	Mori Approximants for Rototranslation, 371	
	5.2.4	Wiener Algebra of Rototranslation, 380	
	5.2.5	Comparison with Experimental Data, 389	
5.3	Some E	ffects of Rotation/Translation Interaction, 390	

Phenomenological, Microscopic, and "Dilute

Gas" Theories of Brownian Rototranslation, 398

Experimental Method of Detecting Rotation/Translation

5.3.1

Interaction, 407 References, 409

5.4

	ER 6 EXPERIMENTAL CONSIDERATIONS. AN ATION OF MODELS AND INTEREXPERIMENTAL RISON	411
	List of Symbols, 411	
6.1	Some Factors that Complicate the Study of the Rotary Dynamics, 413	
	6.1.1 The Problem of Collision-Induced Contributions, 414	
	6.1.2 The Problem of Rotation/Translation Coupling, 416	
	6.1.3 The Problem of Rotational/Vibration Coupling, 425	
	6.1.4 The Problem of Cooperative Behavior, 4286.1.5 Some General Remarks, 430	
6.2	The Experimental Techniques, 433	
	 6.2.1 Magnetic Relaxation Experiments, 433 6.2.2 Light Scattering, 436 6.2.3 The Infrared Experiment, 438 6.2.4 Neutron Scattering, 439 6.2.5 Zero-Terahertz Spectroscopy, 440 	
6.3	Molecular Dynamics Studies, 445	
	6.3.1 Iodomethane, 4456.3.2 Acetonitrile, 4526.3.3 Dichloromethane, 470	
	References, 490	
CHAPTE LIQUIDS	CR 7 THE MOLECULAR DYNAMICS OF SUPERCOOLED S AND GLASSES	492
	List of Symbols, 492	
7.1 7.2	Theory of Defect Diffusion Relaxation, 495 Models for Molecular Dynamics in Glasses, 503	
	7.2.1 Experimental Features for Some Viscous Liquids and Glasses, 509	
	7.2.2 Analysis in Terms of Mean Square Torque, 522	
	7.2.3 Some Applications of Mori Theory, 5257.2.4 Volume of Rotation, 526	
7.3	Thermodynamic Equilibrium in Viscous and Glassy Media:	
7.4	Computer Simulations, 527 Depolarized Light Scattering and Kerr Effect Relaxation in Viscous Liquids and Glasses, 536	

	7.4.1	Comparison of Depolarized Rayleigh Intensity and Permittivity, 536	
	7.4.2	Kerr Effect and Low Frequency Dielectric Relaxation, 538	
	Append	ix: Mode-Mode Interaction and Depolarized Light Scattering, 539	
	Referen	ces, 543	
СНАРТЕ	R 8 MO	LECULAR DYNAMICS OF MESOPHASES	545
	List of S	Symbols, 545	
8.1	Dielectr	ic Loss in Mesophases, 546	
	8.1.1 8.1.2 8.1.3	Theory of Tensor Permittivity, 546 The Internal Field Correction, 551 Freed's Theory of the Nematic Phase Dynamics (1977), 551	
	8.1.4 8.1.5 8.1.6 8.1.7 8.1.8	Selected Low Frequency Dielectric Results, 555 Depolarized Rayleigh Scattering, 561	
8.2	The Far	Infrared Spectra of Liquid Crystals, 568	
	8.2.1	Far Infrared/Megahertz Spectrum of Cholesteryl Oleyl Carbonate in the Cholesteric Phase, 576	
8.3	Comput	ter Simulations, 580	
	Append	ix: Macro-Micro Relations in the Presence of Mode-Mode Coupling, 583	
	Referen	ces, 585	
THROUG		STUDY OF RELAXATION PHENOMENA VALENT "REDUCED" PROCESSES. NONLINEAR DRY	586
	List of	Symbols, 586	
9.1 9.2 9.3	Excitati Mechar The RN	ictuating Force, 587 ion–Relaxation Processes in the Realm of Quantum nics: Radiationless Decay in Molecules, 593 MT for "External" Thermal Baths, 607	
9.4		of the Time Duration of Excitation Pulse in the Case	

9.5	Effects of Strong Irradiation, 621	
	Appendixes, 628	
	References, 636	
	R 10 EQUATIONS OF MOTION: MORI THEORY AND MODELS OF RELAXATION PROCESSES	639
	List of Symbols, 639	
10.1	Introduction, 640	
10.2	Quantumlike Approach to Mori Theory, 641	
10.3	Mori Theory with Non-Hermitian Liouvillian	
40.4	Operators, 651	
10.4	Multidimensional Variables, 656	
10.5	The Continued Fraction Expansion for the Stochastic Liouville Equation, 658	
10.6	The Replacement of the Generalized Langevin Equation	
10.0	with a Markovian One of Enlarged Dimensions, 661	
10.7	The Fokker-Planck Equation Associated with the Classical	
	GLE, 667	
10.8	Non-Gaussian, Non-Markovian Case, 670	
10.9	Relaxation Process in the Presence of External	
10.10	Excitations, 675	
10.10	Emission Spectra in the Presence of Excitation Radiation Fields, 677	
10.11		
	Appendixes, 683	
	References, 700	
СНАРТЕ	R 11 THE DYNAMICS OF COLLISION-INDUCED	
ABSORP		703
11.1	Integrated Intensities of Permanent Dipolar	
11.1	Absorption, 704	
	11.1.1 Integrated Intensity for Symmetric Tops, 705	
	11.1.2 Comparison with the Sum Rule, 706	
	11.1.3 Use and Misuse of Induced Absorption, 710	
11.2	Mechanisms of Induced Absorption, 713	
	11.2.1 The Multipole Moment Tensors, 715	
	11.2.2 Simulation of the Coulombic versus Multipolar	
	Intermolecular Potentials, 718	
	11.2.3 Frost's Theory of Multipole-Induced	
	Absorption, 722	

	11.2.4 11.2.5	Induced Absorption in Linear Molecules, 729 Absorption of Nondipolar Liquids, a Continued Fraction Empiricism, 747	
	11.2.6	Effect of Pressure on Liquid Phase Induced Absorption, 753	
	11.2.7	Induced Absorption in Plastic Crystals, 755	
11.3	Induced	Absorption and Light Scattering, 758	
	11.3.1 11.3.2 11.3.3	Molecular Dynamics Simulation, 759 Continued Fraction Representation, 763 High Accuracy Study of Scattering from Atoms, 770	
11.4	Comput	ter Simulation of Induced Absorption, 772	
	11.4.1	Molecular Dynamics Simulation of the Far Infrared Band of Liquid Nitrogen, 775	
11.5		s of Induced Absorption in Weakly Dipolar trical Tops, 777	
	Referen	ces, 786	
CHAPTE TECHNIC		TERCOMPARISON OF EXPERIMENTAL	788
12.1			
12.1	_	ction, 788	
12.1	_	ction, 788 Survey of the Problem of Consistency, 789	
12.1	Introdu 12.1.1	Survey of the Problem of Consistency, 789 Conditions and Liquids for the Coordination	
	Introdu 12.1.1 Preset (Project, 12.2.1	Survey of the Problem of Consistency, 789 Conditions and Liquids for the Coordination 795 Methylene Chloride (CH ₂ Cl ₂), 796	
	Introdu 12.1.1 Preset (Project, 12.2.1 12.2.2	Survey of the Problem of Consistency, 789 Conditions and Liquids for the Coordination 795 Methylene Chloride (CH ₂ Cl ₂), 796 Methyl Fluoride (CH ₃ F), 799	
12.2	Introdu 12.1.1 Preset (Project, 12.2.1 12.2.2 12.2.3	Survey of the Problem of Consistency, 789 Conditions and Liquids for the Coordination 795 Methylene Chloride (CH ₂ Cl ₂), 796 Methyl Fluoride (CH ₃ F), 799 Methyl Iodide (CH ₃ I), 802	
	Introdu 12.1.1 Preset (Project, 12.2.1 12.2.2 12.2.3 Physica	Survey of the Problem of Consistency, 789 Conditions and Liquids for the Coordination 795 Methylene Chloride (CH ₂ Cl ₂), 796 Methyl Fluoride (CH ₃ F), 799 Methyl Iodide (CH ₃ I), 802 I Properties, 803	
12.2	Introdu 12.1.1 Preset (Project, 12.2.1 12.2.2 12.2.3	Survey of the Problem of Consistency, 789 Conditions and Liquids for the Coordination 795 Methylene Chloride (CH ₂ Cl ₂), 796 Methyl Fluoride (CH ₃ F), 799 Methyl Iodide (CH ₃ I), 802	
12.2	Introdu 12.1.1 Preset (Project, 12.2.1 12.2.2 12.2.3 Physica 12.3.1 12.3.2	Survey of the Problem of Consistency, 789 Conditions and Liquids for the Coordination 795 Methylene Chloride (CH ₂ Cl ₂), 796 Methyl Fluoride (CH ₃ F), 799 Methyl Iodide (CH ₃ I), 802 I Properties, 803 Methylene Chloride, 803 Basic Physical Properties of Methyl Fluoride, 807	
12.2	Introdu 12.1.1 Preset (Project, 12.2.1 12.2.2 12.2.3 Physica 12.3.1 12.3.2	Survey of the Problem of Consistency, 789 Conditions and Liquids for the Coordination 795 Methylene Chloride (CH ₂ Cl ₂), 796 Methyl Fluoride (CH ₃ F), 799 Methyl Iodide (CH ₃ I), 802 I Properties, 803 Methylene Chloride, 803 Basic Physical Properties of Methyl Fluoride, 807 Physical Properties of Methyl Iodide, 807	
12.2	Introdu 12.1.1 Preset (Project, 12.2.1 12.2.2 12.2.3 Physica 12.3.1 12.3.2 12.3.3 Bibliog	Survey of the Problem of Consistency, 789 Conditions and Liquids for the Coordination 795 Methylene Chloride (CH ₂ Cl ₂), 796 Methyl Fluoride (CH ₃ F), 799 Methyl Iodide (CH ₃ I), 802 I Properties, 803 Methylene Chloride, 803 Basic Physical Properties of Methyl Fluoride, 807 Physical Properties of Methyl Iodide, 807 raphy, 808	
12.2	Introdu 12.1.1 Preset (Project, 12.2.1 12.2.2 12.2.3 Physica 12.3.1 12.3.2 12.3.3 Bibliog 12.4.1	Survey of the Problem of Consistency, 789 Conditions and Liquids for the Coordination 795 Methylene Chloride (CH ₂ Cl ₂), 796 Methyl Fluoride (CH ₃ F), 799 Methyl Iodide (CH ₃ I), 802 I Properties, 803 Methylene Chloride, 803 Basic Physical Properties of Methyl Fluoride, 807 Physical Properties of Methyl Iodide, 807 raphy, 808 Methylene Chloride, 808	
12.2	Introdu 12.1.1 Preset (Project, 12.2.1 12.2.2 12.2.3 Physica 12.3.1 12.3.2 12.3.3 Bibliog 12.4.1 12.4.2	Survey of the Problem of Consistency, 789 Conditions and Liquids for the Coordination 795 Methylene Chloride (CH ₂ Cl ₂), 796 Methyl Fluoride (CH ₃ F), 799 Methyl Iodide (CH ₃ I), 802 I Properties, 803 Methylene Chloride, 803 Basic Physical Properties of Methyl Fluoride, 807 Physical Properties of Methyl Iodide, 807 raphy, 808	

xx Contents

- 12.5.2 Methyl Fluoride, 836
- 12.5.3 Methyl Iodide, 840

12.6 Intercomparison of Experimental Data, 842

- 12.6.1 Dielectric and Far Infrared Spectroscopy, 843
- 12.6.2 Infrared Band Shapes, 846
- 12.6.3 Vibration/Rotation Coupling, 849
- 12.6.4 Neutron Scattering, 851

References, 856

Index, 859