CONTENTS

Preface

- (Ra) Radiation Processes
 - A: One Photon Processes
 - Ra-A1 Free-Free Transitions
 - (1) $e + H^+, D^+, \dots$
 - (2) e + e
 - (3) e + H
 - (4) $H^+ + H$
 - Ra-A2 Bound-Free Transitions
 - Ra-A3 Bound-Bound Transitions

Einstein's A-coefficient

Einstein's B-coefficient

Oscillator Strength

Absorption Cross Section

Numerical Values of A and f for Hydrogenlike Atoms

- Ra-A4 Other One Photon Processes
- B: Multi Photon Processes
 - Ra-B1 Multiphoton Processes I Neutral Hydrogen Atom
 - Ra-B2 Multiphoton Processes II Negative Hydrogen Ion
 - Ra-B3 Two Photon Emission of H(2s)
- (E) Electron Collisions
 - A: e + H Collisions (Total Cross Section. Elastic Scattering. Excitation. Ionization)
 - E-A1 Survey of Experiments
 - E-A2 Survey of Theoretical Calculations
 - E-A3 Data
 - B: $e + H^-$ Collisions (Elastic Scattering. Detachment)
 - E-B1 Survey of Experiments
 - E-B2 Survey of Theoretical Calculations
 - E-B3 Data
 - C: e + H + Collisions
 - E-C Coulomb Scattering

(I) Ion Collisions

A: $H^+(D^+, T^+) + H(D, T)$ Collisions (Elastic Scattering, Excitation, Ionization, Charge Transfer)

I-A1 Survey of Experiments

I-A2 Survey of Theoretical Calculations

I-A3 Data

B: $H^-(D^-,T^-) + H(D,T)$ Collisions (Elastic Scattering. Detachment. Charge Transfer)

I-B1 Survey of Experiments

I-B2 Survey of Theoretical Calculations

I-B3 Data

C: $H^+(D^+, T^+) + H^-(D^-, T^-)$ Collisions (Mutual Neutralization. Detachment)

I-C1 Survey of Experiments

I-C2 Survey of Theoretical Calculations

I-C3 Data

D: $H^-(D^-, T^-) + H^-(D^-, T^-)$

(Re) Recombination. Attachment

Re-A Radiative Recombination $e + H^+ \rightarrow H(nl) + h\nu$

Re-B Collisional-Radiative Recombination

Re-C Radiative Attachment $e + H \rightarrow H^- + h\nu$

Re-D Attachment through Tree-Body Collisions

(N) Collisions between Neutral Atoms

A: H(D, T) + H(D, T) Low Energy Collisions

B: H(D, T) +H(D, T) High Energy Collisions

Elastic Scattering. Excitation. Ionization. Charge Transfer

C: $H^*(D^*, T^*) + H^*(D^*, T^*)$

N-C1 Excitation Transfer

N-C2 H* +H* Collisional Ionization

N-C3 $H^* + H^* \rightarrow H_2^+ + e$

(M) Formation and Destruction of Hydrogen Molecules

A: Radiative Association and Dissociation

B: Formation of Molecules by Three-Body Collisions

C: Thermal Dissociation of Molecules

D: Dissociation by Electron Impact

E: Dissociation of H_2^+ and H_2 by Collisions with H_1 , H_2^+ , H_2^+ ,

M-E1 Survey of Experiments

M-E2 Survey of Theoretical Calculations

M-E3 Data

- (O) Other Processes and Related Problems
 - A: Problems Concerning Charged Particles in H and H₂ Gases (Stopping Powers, Ranges, W-values etc. in H and H₂)
 - O-Al Stopping Power
 - O-A2 Range
 - O-A3 W-values
 - B: Equilibrium Charge Distributions of Hydrogen Beams after Passing through Atomic and Molecular Hydrogen Gases
 - C: Width and Shifts of Spectral Lines in Hydrogen Plasmas
 - D: The Lifetime of Metastable $2S_{\frac{1}{2}}$ State of Hydrogen
 - E: Reduction of Ionization Potential in Plasma
 - F: Relative Intensities of Spectral Lines from Hydrogen Plasmas
- (An) Appendix
 - (1) Cross Section
 - (2) Relation between Energy and Velocity
 - (3) Constants of Frequent Use