.

Contents

Preface	. v
Chapter 1. The Historical Development of Modern Physics, from 1900 Bohr's Theory	to . 1
1-1. Introduction	. 1
1-2. The Electron and the Nuclear Atom	
1-3. The Development of the Quantum Theory from 1901 to 1913.	. 12
1-4. The State of Atomic Spectroscopy in 1913	. 17
1-5. The Postulates of Bohr's Theory of Atomic Structure	. 19
1-6. The Quantum Conditions, and Bohr's Theory of Hydrogen	. 22
1-7. Elliptic Orbits, Space Quantization, and Zeeman Effect in Hydrogen.	. 26
1-8. Sommerfeld's Quantum Condition for the Linear Oscillator.	. 27
Chapter 2. Modern Physics from Bohr's Theory to Wave Mechanics	. 31
2-1. Introduction	. 31
2-2. Waves and Photons in Optics	. 32
2-3. The Wave Hypothesis of de Broglie	. 35
2-4. Newtonian Mechanics as a Limit of de Broglie's Wave Hypothesis	. 37
2-5. Wave Packets and the Uncertainty Principle	. 40
2-6. Schrödinger's Equation	. 44
2-7. Suggested References on Atomic Physics and Quantum Mechanics	. 47
Chapter 3. Schrödinger's Equation and Its Solutions in One-dimension	nal
Problems	. 51
3-1. Hamiltonian Mechanics and Wave Mechanics	. 51
3-2. Schrödinger's Equation, and the Existence of Stationary States	. 54
3-3. Motion of a Particle in a Region of Constant Potential	. 58
3-4. Joining Conditions at a Discontinuity of Potential	. 61
3-5. Wave Functions in a Potential Well, and Other Related Problems	
3-6. The WKB Solution and the Quantum Condition	. 74
3-7. The Linear Oscillator	. 79
3-8. The Numerical Solution of Schrödinger's Equation	. 83
Chapter 4. Average Values and Matrices	. 86
4-1. Introduction	. 86
4-2. The Orthogonality of Eigenfunctions, and the General Solution of Sch	rö-
dinger's Equation	. 86
4-3. The Average Values of Various Quantities	. 92

CONTENTS	5

4-5. 4-6. 4-7.	Matrix ComponentsSome Theorems Regarding MatricesMatrix Components for the Linear OscillatorAverage Values and the Motion of Wave PacketsThe Equation of Continuity for the Probability Density				• • •	95 98 102 104 105
Chapt	ter 5. The Variation and Perturbation Methods.					110
5-2.	The Variation Principle			•	•	110 113 119
	The Perturbation Method in the General Case Properties of Unitary Transformations				•	$\frac{123}{126}$
Chap	ter 6. The Interaction of Radiation and Matter		•	•		131
	The Quantization of the Electromagnetic Field					131 133
6-3.	Quantum Statistics and the Average Energy of an Oscillator The Distribution of Modes in the Cavity.			•		135
	Einstein's Probabilities and the Equilibrium of Radiation an Quantum Theory of the Interaction of Radiation and Matte				× v	137 140
6-6.	The Classical Limit for Electromagnetic Problems Hamiltonian and Wave-mechanical Treatment of an Atomic				a	142
	Classical Radiation Field			·	а	144
	The Method of Variation of Constants for Transition Proba The Kramers-Heisenberg Dispersion Formula			•	•	148 154
	Dirac's Theory of the Interaction of Radiation and Matter The Breadth of Spectrum Lines	•	•	•	•	158 159
	ter 7. The Hydrogen Atom.					166
	Schrödinger's Equation for Hydrogen				•	166
7-2. 7-3.	The Radial Wave Function for Hydrogen The Angular Momentum; Dependence of the Wave Function	on on	An	gles		170 177
7-4.	Series and Selection Rules	٠	•	•	•	182
	ter 8. The Central-field Model for Atomic Structure	•	·	•	•	188
8-2.	Introduction	•	•			188 189
8-3. 8-4	The Periodic Table of the Elements		·		·	192 196
8-5.	An Example of Atomic Spectra: the Sodium Atom	÷	•	•	•	199 205
8-6. 8-7.	Optical and X-ray Energy Levels of the Atoms Dimensions of Electronic Wave Functions in Atoms	•	:	•	•	205 209
Chap	ter 9. The Self-consistent-field Method			•	•	213
	Hartree's Assumption for the Atomic Wave Function The Average Hamiltonian for an Atom	•	•	•	•	213 215
9-3.	Energy Integrals for the Hartree Calculation			•	;	216
9-5.	The Hartree Equations as Determined by the Variation Me Examples of Calculation by the Self-consistent-field Method				:	219 222
9-6.	The One-electron and Many-electron Energies of an Atom.	÷	•	·	•	226 227
	Inner and Outer Shielding		·			229

CONTENTS	xi
Chapter 10. The Vector Model of the Atom	234
10-1. Multiplets in Complex Spectra.	234 239
10-2. The Russell-Saunders Coupling Scheme 10-3. The Classical Mechanics of Vector Coupling 10-3. The Classical Mechanics of Vector Coupling	239 245
10-3. The Classical Mechanics of Vector Coupling	245 249
10-4. Lande's Theory of Multiplet Separation and the Zeeman Enert	249
Chapter 11. The Behavior of Angular-momentum Vectors in Wave Mechanics	255
11-1. The Angular Momentum of an Electron in a Central Field	255
11-2. The Precession of the Angular-momentum Vector	258
11-3. General Derivation of Matrix Components of Angular Momentum	259
11-4. Application of Angular-momentum Properties to Complex Atoms.	264
11-5. The Nature of Spin-orbitals	271
11-6. Use of Angular-momentum Operators in Cases Including Spins	274
Chapter 12. Antisymmetry of Wave Functions and the Determinantal Method	279
12-1. Wave Functions and Matrix Components of the Hamiltonian for the Two-	
electron System	279
12-2. Symmetric and Antisymmetric Wave Functions, and Pauli's Exclusion	282
Principle	284 286
12-3. Spin Coupling in the Two-electron System	280 288
12-4. The Antisymmetric Wave Function in the N-electron Case	200
12-5. Matrix Components of Operators with Respect to Determinantal Wave Functions.	291
Chapter 13. The Elementary Theory of Multiplets	296
13-1. The Secular Problem in Russell-Saunders Coupling	296
13-2. Further Examples of the Secular Problem	301
13-3. Matrix Components of the Hamiltonian for the Central-field Problem .	306
13-4. Energy Values for Simple Multiplets	312
Chapter 14. Further Results of Multiplet Theory: Closed Shells and Average	
Energies	316
14-1. Closed and Almost Closed Shells	316
14-2. The Average Energy of a Configuration	322
14-3. Formulation of Multiplet Calculations in Terms of Average Energy	326
Chapter 15. Multiplet Calculations for Light Atoms	332
15-1. Introduction	332
15-2. Experimental Energy Levels of Light Elements	337
15-3. Determination of E_{av} , $F^2(2p,2p)$, and $G^1(2s,2p)$ from Experiment, Using	343
Least Squares.	
15-4. Simple Analytic Models for Wave Functions and Energies of Light Atoms	348 356
15-5. The Self-consistent-field Method for Light Atoms	364
15-6. Ionization Potentials and X-ray Energy Levels	368
Chapter 16. Multiplet Calculations for Iron-group Elements	374
16-1. Introduction	374
16-2. Experimental Results on Iron-group Multiplets	376
16-3. Self-consistent-field Calculations for the Iron Group: Multiplet Separa- tions	383
	000

C	0	N	Т	EI	N	TS

	npari ential	son of Theory and Experiment for Total Energy and Ionization ls .	389			
Appendix	1.	Bohr's Theory for Motion in a Central Field	395			
		The Principle of Least Action	402			
		Wave Packets and Their Motion	405			
	4.	Lagrangian and Hamiltonian Methods in Classical Mechanics .	412			
	5.	The WKB Method	420			
	6.	Properties of the Solution of the Linear-oscillator Problem	422			
	7.	The Hermitian Character of Matrices	426			
	8.	Solution of a Cubic Secular Equation	429			
	9.	Orthogonality of Solutions of a Secular Problem	430			
	10.	The Correspondence Principle	432			
		The Sum Rule for Oscillator Strengths.	441			
	12.	The Quantum Theory of the Electromagnetic Field	443			
13. Schrödinger's Equation for the Central-field Problem						
	14.	Properties of the Associated Legendre Functions	457			
		Solutions of the Hydrogen Radial Equation	461			
	16.	Bibliography of the Hartree and Hartree-Fock Methods	468			
	17.	The Thomas-Fermi Method for Atoms.	480			
	18.	Commutation Properties of Angular Momenta for Atoms	484			
		Positive Nature of Exchange Integrals.	486			
	20a.	Tabulation of c 's and a 's for Multiplet Theory for s , p , and d				
		Electrons	488			
	21a.	Tabulation of Energies of Multiplets	491			
Index			495			

•