CONTENTS

1.	INTR	1				
	1.1	Superconductivity				
	1.2	Superconducting materials				
	1.3	Large-scale application of superconductivity				
		1.3.1 Superconducting magnets				
		1.3.2 Electrical machinery with superconducting coils	4			
		1.3.3 Superconducting power transmission lines	5			
	1.4	The problem of dissipation in superconductors.				
		Purpose and content of the present work	7			
2	2 SOME ASDECTS OF THE MIXED STATE OF					
• •	TYPE	E-U SUPERCONDUCTORS	10			
	2.1	Classification of superconductors Vortex structure	10			
	2.1 Classification of superconductors. Vortex structure					
	2.2 Single vortex in an infinite superconductor					
		2.2.1 Single vortex in an infinite superconductor	12			
		superconductor The Bean–Livingston barrier	13			
	2.3	Ideal type-II superconductors. Energy dissipation in				
	2.0	ideal type-II superconductors	18			
	2.4	Non-ideal type-II superconductors	20			
		2.4.1 Pinning and critical current	20			
		2.4.2 Mechanisms of pinning	21			
		2.4.3 Critical state model	24			
		2.4.4 Low-frequency dissipation in non-ideal type-II				
		superconductors	30			
3	EXPEDIMENTAL TECHNIQUES FOR THE					
5.	STU	34				
	21	24				
	3.1	2.1.1 Method of isothermal calorimetry	34 34			
		3.1.2 Methods of adiabatic and semi-adiabatic	54			
		s.1.2 Methods of adiabatic and semi-adiabatic	35			
	32	Flectromagnetic methods	39			
	5.4	3.2.1 Measurement of the magnetization hysteresis	57			
		area	40			
		3.2.2 The superconducting transformer	42			
		3.2.3 Poynting's vector measurements	43			

CONTENTS

4.	MEASUREMENT TECHNIQUES					
	4.1	Principle of the measurement system based on the				
		electronic wattmeter	46			
	4.2	Calculation of dissipation according to the wattmeter				
		readings	49			
	4.3	The wattmeter circuit and its adjustment	51			
	4.4	Other measurement techniques	55			
5	INVE	STIGATED SAMPLES PREPARATION				
5.	TREATMENT DIAGNOSTICS					
	5 1	Nh Sn (Nh Zr) Sn	60			
	5.1	Nb ₃ Ge	66			
	5.3	Nb	68			
	5.4	V ₂ Hf and NbN	70			
		2				
6.	THE S	SURFACE OF THE SUPERCONDUCTOR				
	AND DISSIPATION					
	6.1	The influence of the surface condition on dissipation	72			
	6.2	Absorption of hydrogen during chemical treatment of				
		Nb_3Sn . Normal metal on the surface of the				
		superconductor and dissipation	82			
_						
7.	SURF	ACE SHIELDING FIELD. NON-				
	TYPE-II SUPERCONDUCTOR TO a C FIFI DS					
	OF LOW AMPLITUDES. MAGNETIC FIELD					
	DENE	TRATION DEPTH	94			
	7 1	Experimental determination of the surface shielding	74			
	/.1	Experimental determination of the surface shielding	04			
	72	Non-dissipative response of a non-ideal type-II	24			
	1.2	superconductor to a modulating field of low amplitude	101			
	7.3	Change of the magnetic flux penetration depth as a	101			
		result of the surface treatment of the superconductor	105			
		-				
8.	TEMI	PERATURE DEPENDENCE OF THE				
	DISSIPATION					
	8.1	The influence of Zr additions on losses in				
		$(Nb_{1-x}Zr_x)_3Sn/Nb_{1-x}Zr_x/(Nb_{1-x}Zr_x)_3Sn$ structures	110			
	8.2	Some technological factors in the preparation of	<i>i</i> = 1			
	0.2	$(Nb_{1-x}Zr_x)_3Sn(SSD)$ which affect losses at >4.2 K	121			
	8.3	Dissipation at temperatures <4.2 K	128			

viii

	CO)N	Т	E	N	Т	S
--	----	----	---	---	---	---	---

ix

9.	DISSIPATION UNDER SUPERPOSED a.c. AND d.c. MAGNETIC FIELDS					
	9.1 9.2	Experin Models	mental study of the dissipation minimum s for an interpretation of the dissipation	132		
		minim	im	140		
	9.3	The dis magnet	sipation minimum under non-collinear cic fields	153		
10.	DISSI TECH	PATIC NICA	DN AND CRITICAL CURRENT IN L TAPES BASED ON Nb ₃ Sn AND			
	Nb ₃ Ge					
	10.1	Losses	in stabilizing materials	164		
	10.2	Critica	current of Nb_3Sn tapes under strain	166		
	10.3	Losses	and critical current in Nb_3Sn tapes	167		
	10.4	Nb ₃ Ge	(CVD)	169		
11.	DISSIPATION IN SUPERCONDUCTING LAVES Phase compounds, niobium nitride, and					
	A NEW HIGH T _c MATERIAL					
	11.1	V ₂ Hf		174		
	11.2	Ternar	y and quaternary Laves phases based on V_2 Hf	177		
	11.5	INDIN Y-Ba-0	ີາ⊔_Pt_ſ	183		
	11.7	I Da		104		
12.	ENERGY DISSIPATION IN ADVANCED					
	COMPOSITE SUPERCONDUCTORS					
	12.1	Composite materials with submicron filament				
	10.0	diamete	ers	200		
	12.2	Some t	heoretical estimates of the proximity effect and			
		compos	sites with ultrafine filaments	207		
		12.2.1	Influence of the proximity effect on $T_{\rm e}$ and $H_{\rm e2}$	208		
		12.2.2	Superconducting properties of the copper	209		
		12.2.3	One-dimensional vortex structure in ultrafine	207		
			filaments	211		
REFERENCES				216		
INI	DEX			227		