Chapter 1

PLASMA CONFINEMENT IN CLOSED MAGNETIC SYSTEMS	
L. S. Solov'ev and V. D. Shafranov	1
§1. Introduction	1
§ 2. General Properties of Toroidal Configurations	10
1. Generalized Curvilinear Coordinate System	11
2. Coordinates in Which the Lines of Force are Straight	13
3. Magnetic Differential Equation	15
4. Relation between the Integral $\int dl / B$ and the Derivative of	
the Volume with Respect to the Flux $V'(\Phi)$	17
5. Requirements for Current Closure on Magnetic Surfaces	20
6. Natural Coordinates	25
§ 3. Orthogonal Coordinate System with Spatial Axis	28
1. Metric	28
2. Differential Operators	32
§ 4. Magnetic Field near a Given Line of Force	37
§ 5. Structure of Magnetic Surfaces in the Vicinity of a Closed Line	
of Force	48
§ 6. Magnetic Surfaces Close to a Magnetic Axis	57
1. Second Approximation in ρ	57
2. Third Approximation in ρ	60
3. Fourth and Higher Approximations in ρ	64
4. Helical Symmetry	65
§ 7. Shape of Toroidal Magnetic Surfaces	69
§8. Perturbation of Magnetic Surfaces by a First-Harmonic Field	73
1. Displacement of the Magnetic Axis by a Transverse Field.	74
2. Uniform Configurations	76
3. Change in the Cross-Sectional Shape of Magnetic Surfaces	
Due to a Transverse Magnetic Field	77
§ 9. Solution of the Equations for the Parameters of the Magnetic	
Surface	81
\$10. Perturbation of Toroidal Magnetic Surfaces	83
1. Perturbation Method for Finding Magnetic Surfaces	84
2. Effect of an Individual Harmonic of the Perturbing Field	8 9

viii

	3. Perturbations of the Second and Higher Approximations	92
	4. Resonance Effects in the Vicinity of a Magnetic Axis	96
	5. Examples of Splitting of Magnetic Surfaces	107
§11.	Plasma Equilibrium in a Toroidal System	117
	1. General Equations	117
	2. Current Density	120
	3. Perturbations of the Magnetic Field	123
	4. Magnetic Surfaces in the Presence of Plasma	126
	5. Plasma Equilibrium in an $l = 2$ Stellarator	127
	6. Plasma Equilibrium in a Trap with a Spatial Magnetic Axis	131
	7. Plasma Equilibrium in the Presence of a Longitudinal	
	Current	135
§ 12.	Effect of Curvature on Classical Diffusion and Thermal	
	Conductivity	145
§ 13.	Integral Characteristics of Toroidal Magnetic Configurations	151
	1. Specific Volume $V^{\bullet}(\Phi)$	154
	2. Specific Volume of Magnetic Configurations with a	
	Straight Magnetic Axis	157
	3. Mean Rotational Transform of the Lines of Force	
	$t = 2\pi\chi'(\Phi)$	15 9
	4. Specific Volume of a Configuration with Cross Section	
	That Is Approximately Circular $V^{\bullet}(\Phi)$	161
	5. Estimate of the Specific Volume $V^{\bullet}(\Phi)$ on the Separatrix	163
§14.	Examples of Actual Systems	164
	1. Configuration with a Straight Magnetic Axis	164
	2. Configurations with a Helical Magnetic Axis	168
	3. Closed Uniform Configurations.	178
	4. Uniform Configurations with a Circular Magnetic Axis	182
	5. Uniform Configuration with Spatial Magnetic Axis	189
§15.	Helical Magnetic Configurations.	195
	1. Specific Volume of a Helical Magnetic Tube	197
	2. Mean Rotational Transform for the Lines of Force	
	$\mathfrak{l} = 2\pi\chi (\Phi)$,	201
	3. Exact Expressions for the Specific Volume V'(Φ) and the	
	Rotational Transform $\iota = 2\pi \chi'(\Phi)$	201
	4. Ratio of the Specific Volumes at the Magnetic Axis and	
	the Separatrix	203
	5. Results of Numerical Calculations	203
§16.	Containment of Charged Particles in Closed Toroidal	
	Configurations	207
	1. Motion of Single Charges in Vacuum	207

CONTENTS	ix
2. Motion of Charges in a Collisionless Plasma	212
Appendix I. Magnetic Surfaces Near Elliptic and Hyperbolic	
Magnetic Axes	2 19
1. Coordinate System	220
 Magnetic Surfaces in the Vicinity of a Closed Line of Force Representation of Magnetic Surfaces in the Form of Series 	22 1
in Powers of the Departure from the Magnetic Axis	224
4. Perturbation of a Magnetic Configuration by Transverse	
Fields	231
Appendix II. Calculation of the Surface Functions ψ and ψ^* by the	
Method of Averaging	234
1. Approximate Integral for the Equations of the Magnetic	
Lines of Force	235
2. Stability of Magnetic Surfaces	238
3. Approximate Integrals of the Drift Equations	240
Appendix III. Number of Loops for Two Closed Curves	243
Appendix IV. Certain Integrals that Appear in Calculations of the	
Specific Volume V'(Φ) and the Rotational Transform $\iota = 2\pi \mu(\Phi)$	244
References	245
Chapter 2	
TURBULENCE IN TOROIDAL SYSTEMS	
B. B. Kadomtsev and O. P. Pogutse	249
Introduction	24 9
§1. Equilibrium	253
1. Equilibrium of an Ideal Plasma. Coordinate System	253
2. Drift Flows in an Equilibrium Plasma.	257

	400
1. Equilibrium of an Ideal Plasma. Coordinate System	253
2. Drift Flows in an Equilibrium Plasma	257
3. Particle Drift Trajectories	261
4. Equilibrium of a Rarefied Plasma	266
§2. Hydromagnetic Instability	268
1. Flute Instability	268
2. Screw Instability	275
§ 3. Drift and Dissipative Instabilities	277
1. Choice of Parameters and Localization Width for the	
Perturbations	277
2. Equations for the Dissipative Hydromagnetic Instabilities	282
3. Current-Convective Instability	2 9 3
4. Drift-Dissipative Instability.	2 9 6

		200
5.	Gravitational Dissipative Instability	2 99

ix

х

6. Temperature Drift Instability	303
7. Collisionless Instabilities Excited by Electrons	30 9
8. Nonelectrostatic Instabilities	312
9. Instability in a Dense Plasma	316
§4. Trapped-Particle Instability	321
1. Collision-Free Instability	321
2. Dissipative Instabilities Due to Trapped Particles	331
3. Instability Associated with Finite Orbits	333
§ 5. High-Frequency Instabilities	335
1. Drift Cyclotron Instabilities	335
2. Ion-Acoustic Instability	337
§6. Helical Magnetic Cells	339
§ 7. Thermal Convection of a Current-Carrying Plasma	349
1. Basic Equations	349
2. Convection in an Individual Cell	352
3. Heat Flux in the Presence of Convection	360
§8. Transport of Particles and Heat by the Temperature Drift	
Instability	368
1. Turbulent Thermal Conductivity	368
2. Interaction Between Cells (Quasi-Modes)	375
3. Turbulent Diffusion	377
§ 9. Anomalous Diffusion Due to Trapped Particles	379
\$10. Diffusion in Small-Shear Systems	383
1. Drift-Dissipative Instability	383
2. Finite-Orbit Instability	387
3. Drift Instability	388
\$11. Summary of Formulas	390
Conclusion	395
References	398
	000
Chapter 3	
CYCLOTRON INSTABILITIES IN AN ANISOTROPIC PLASMA	
A. V. Timofeev and V. I. Pistunovich	401
§ 1. Introduction. Classification of Instabilities	403
a. General Relations	403
b. Excitation of Cyclotron Waves with Normal Dispersion	
$(\omega \frac{\partial \operatorname{Re} \varepsilon}{\partial \omega} > 0) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	404
c. Excitation of Cyclotron Waves with Anomalous Dispersion	
$\left(\omega \; \frac{\partial \operatorname{Re} z}{\partial \omega} \leqslant 0\right) \; \cdots $	406
)	100

CONTENTS

	d. Waves with Frequency $\omega \gg \omega_i$	408
§ 2.	Basic Equation	408
§ 3.	Stability of a Plasma with an Anisotropic Maxwellian Ion	
	Distribution	411
	a. Ion-Acoustic Waves ($\mu < 1$)	411
	b. Dissipative Instability ($\mu \leq 1, \tau \gg 1$)	4 1 4
	c. Electron-Plasma (Electron-Acoustic) Waves ($\mu \ge 1$)	419
	d. Hydrodynamic Instabilities ($\mu \ge 1, \tau \gg 1$)	421
§4.	Stability of a Plasma with a δ -Function Ion Velocity	
	Distribution	423
	a. Cyclotron Oscillations of a Plasma with Cold Electrons	
	(Hydrodynamic Instability)	423
	b. Oscillations at Frequencies $\omega \gg \omega_i \dots \dots$	427
	c. Cyclotron Oscillations in a Plasma with Hot Electrons	
	(Dissipative Instability)	430
	d. Transverse Wave Instability $k_{\parallel} \ll k_{\perp} \cdots \cdots \cdots \cdots$	432
§5.	Stability of an Anisotropic Plasma with Cold Ions	434
§6.	Stability of a Plasma with a Nonequilibrium Electron Velocity	
	Distribution	435
	a. Anisotropic Maxwellian Distribution	436
	b. Velocity Distribution in the Form of a δ Function	438
§7.	Conclusion. Basic Results	439
App	endix	441
Refe	erences	443

Chapter 4

MAGNETOHYDRODYNAMIC THEORY OF THE PINCH EFFECT IN A DENSE HIGH-TEMPERATURE PLASMA (DENSE PLASMA FOCUS)	
V. F. D'yachenko and V. S. Imshennik	447
Introduction	447
§ 1. Magnetohydrodynamic Equations for the Pinch Effect with	
Dissipative Processes Taken into Account	454
a. Physical Assumptions. Equations in General Vector Form	454
b. One-Dimensional Equations for Cylindrical Symmetry	457
c. Dissipation Coefficients for a Fully Ionized Plasma	458
d. Dimensionless Form of the Equations and Defining	
Parameters	459
e. Boundary Conditions and Initial Conditions in the	
General Problem.	462

xi

§2.	Lim	iting Case of Infinitely High Electrical Conductivity in a						
	Plas	ma and a Constant Electric Current	464					
	а.	Transition to the Limiting Case of a One-Parameter						
		Problem	464					
	b.	Discussion of the Solution of the One-Parameter Problem	466					
	c.	Effect of Ion Thermal Conductivity	476					
	d.	Stagnation Increase in Temperature	478					
	e.	Thermonuclear Neutron Yield and Spatial Distribution						
		of the Soft X Radiation	479					
§ 3.	Fini	te Electrical Conductivity and ac Electric Current.						
	Con	parisons with Experiment	481					
	а.	Effect of Finite Conductivity for dc Current	481					
	b.	General Case of ac Electrical Current with Finite						
		Electrical Conductivity	483					
	с.	Comparison with Experimental Results	48 9					
Conclusion.								
Refer	ence	28	4 9 3					
Chap	ter :	5						

аp

ENERGY BALANCE AND THE FEASIBILITY OF A SELF-SUSTAINING
THERMONUCLEAR REACTION IN A MIRROR DEVICE
V. D. Sivukhin

References		•		•		•	•	•	•	•			•							•	•	•			•	•				•	•						•		52^{4}	4	
------------	--	---	--	---	--	---	---	---	---	---	--	--	---	--	--	--	--	--	--	---	---	---	--	--	---	---	--	--	--	---	---	--	--	--	--	--	---	--	----------	---	--

xii