TABLE OF CONTENTS

CHAPTER	PAGE
Preface	v
Introduction	xv
I. PHYSICAL PROPERTIES OF GASES AND SIMPLE	
KINETIC THEORY OF GASES	1
1. Introduction	1
2. Equation of state	3
3. Specific heats and gas constant	4
4. The fundamental facts about viscosity	6
5. Some facts about heat transfer	11
6. Entropy	13
7. Physical properties of air	14
References	16
IL CENEDALIZATION OF LAWS OF PRICTION AND OF	
II. GENERALIZATION OF LAWS OF FRICTION AND OF	
HEAT CONDUCTION	17
1. Introduction	17
2. General theory of stress	18
3. Equilibrium of nonhomogeneous states of stress	22
4. General theory of strain	23
5. Physical laws connecting stress and strain	26
6. Generalization of the laws of heat conduction	27
7. General orthogonal coordinates	28
References	31
III FIINDAMENTAL FOLLATIONS OF FLUID DANAMICS	
III. FUNDAMENTAL EQUATIONS OF FLUID DYNAMICS	
OF VISCOUS COMPRESSIBLE FLUIDS	33
1. Introduction	33
2. Equation of state	34
3. Equation of continuity	35
4. Equations of motion	36
5. Equation of energy	41
6. General orthogonal coordinates and moving axes	44
References	47

CHAPTER	PAGE
IV. SOME EXACT SOLUTIONS OF NAVIER-STOKES	
EQUATIONS	48
$1. Introduction \ldots \ldots$	48
2. Laminar flow between parallel walls	49
(a) Plane Couette flow	50
(b) Plane Poiseuille flow	51
(c) Generalized plane Couette flow	51
3. Laminar flow between concentric rotating cylinders—	
Couette flow	53
4. Hagen-Poiseuille flow in a circular pipe	56
5. Convergent and divergent channels	57
6. Flow in the vicinity of a stagnation point	60
(a) Two-dimensional case	60
(b) Axially symmetrical case	61
7. Unsteady motions of a plate	62
8. Commencement of some simple flows	64
9. Dissolution of a vortex filament	66
10. Laminar flow from a rotating disc	67
11. The round laminar jet	72
12. One-dimensional steady flow of a viscous compressible	
fluid	74
(a) Flow with uniform conditions at plus infinity .	77
(b) Shock-wave thickness	78
(c) Von Mises transformation	79
13. Other simple flows of a viscous compressible fluid	80
(a) Plane Couette motion	80
(b) Flow past a porous flat plate	81
(c) Simple shearing motion between rotating cylinders	83
(d) Circulating flow round a circular cylinder with suc-	
tion at the surface	83
References	84
V. REYNOLDS LAWS OF SIMILARITY AND DIMEN-	
SIONAL ANALYSIS	86
1. Introduction	86
2. Reynolds laws of similarity	87
3. Dimensional analysis and π -theorem	90
4. Important nondimensional quantities in mechanics of	i
viscous fluids \ldots \ldots \ldots \ldots \ldots	94
References	99

viii

VI. PROPERTIES OF THE NAVIER-STOKES DIFFEREN- TIAL EQUATIONS 100 1. Introduction 100 2. Potential flow and Navier-Stokes equations 101 3. Vorticity transport equation 102 4. Solutions of Navier-Stokes equations 104 5. Heat-conduction equation 107 6. Burgers' model 108 7. Linearized Navier-Stokes equations 111 8. Limiting cases for very small Reynolds numbers 112 9. Limiting cases for very large Reynolds numbers 113 10. Mathematical structure for boundary layer theory 115 References 117 VII. THEORY OF VERY SLOW MOTION 118 1. Introduction 118 2. The differential equations of very slow motion 119 3. The motion of a sphere in a viscous fluid 120 4. Oseen's improvement of Stokes' theory 122 5. Theory of lubrication 125 6. The Hele-Shaw's flow pattern 127 7. Effect of viscosity on water waves 129 References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
TIAL EQUATIONS1001. Introduction1002. Potential flow and Navier-Stokes equations1013. Vorticity transport equation1024. Solutions of Navier-Stokes equations1045. Heat-conduction equation1076. Burgers' model1087. Linearized Navier-Stokes equations1118. Limiting cases for very small Reynolds numbers1129. Limiting cases for very large Reynolds numbers11310. Mathematical structure for boundary layer theory115References117VII. THEORY OF VERY SLOW MOTION1181. Introduction1182. The differential equations of very slow motion1193. The motion of a sphere in a viscous fluid1204. Oseen's improvement of Stokes' theory1225. Theory of lubrication1256. The Hele-Shaw's flow pattern1277. Effect of viscosity on water waves129References131VIII. THE BOUNDARY LAYER EQUATIONS1321. Introduction132
1. Introduction 100 2. Potential flow and Navier-Stokes equations 101 3. Vorticity transport equation 102 4. Solutions of Navier-Stokes equations 104 5. Heat-conduction equation 107 6. Burgers' model 108 7. Linearized Navier-Stokes equations 111 8. Limiting cases for very small Reynolds numbers 112 9. Limiting cases for very large Reynolds numbers 113 10. Mathematical structure for boundary layer theory 115 References 117 VII. THEORY OF VERY SLOW MOTION 118 1. Introduction 118 2. The differential equations of very slow motion 119 3. The motion of a sphere in a viscous fluid 120 4. Oseen's improvement of Stokes' theory 122 5. Theory of lubrication 125 6. The Hele-Shaw's flow pattern 127 7. Effect of viscosity on water waves 129 References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
2. Potential flow and Navier-Stokes equations 101 3. Vorticity transport equation 102 4. Solutions of Navier-Stokes equations 104 5. Heat-conduction equation 107 6. Burgers' model 108 7. Linearized Navier-Stokes equations 111 8. Limiting cases for very small Reynolds numbers 112 9. Limiting cases for very large Reynolds numbers 113 10. Mathematical structure for boundary layer theory 115 References 117 VII. THEORY OF VERY SLOW MOTION 118 1. Introduction 118 2. The differential equations of very slow motion 119 3. The motion of a sphere in a viscous fluid 120 4. Oseen's improvement of Stokes' theory 122 5. Theory of lubrication 125 6. The Hele-Shaw's flow pattern 127 7. Effect of viscosity on water waves 129 References 131
3. Vorticity transport equation 102 4. Solutions of Navier-Stokes equations 104 5. Heat-conduction equation 107 6. Burgers' model 108 7. Linearized Navier-Stokes equations 111 8. Limiting cases for very small Reynolds numbers 112 9. Limiting cases for very large Reynolds numbers 113 10. Mathematical structure for boundary layer theory 115 References 117 VII. THEORY OF VERY SLOW MOTION 118 1. Introduction 118 2. The differential equations of very slow motion 119 3. The motion of a sphere in a viscous fluid 120 4. Oseen's improvement of Stokes' theory 122 5. Theory of lubrication 125 6. The Hele-Shaw's flow pattern 127 7. Effect of viscosity on water waves 129 References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
4. Solutions of Navier-Stokes equations 104 5. Heat-conduction equation 107 6. Burgers' model 108 7. Linearized Navier-Stokes equations 111 8. Limiting cases for very small Reynolds numbers 112 9. Limiting cases for very large Reynolds numbers 113 10. Mathematical structure for boundary layer theory 115 References 117 VII. THEORY OF VERY SLOW MOTION 118 1. Introduction 118 2. The differential equations of very slow motion 119 3. The motion of a sphere in a viscous fluid 120 4. Oseen's improvement of Stokes' theory 122 5. Theory of lubrication 125 6. The Hele-Shaw's flow pattern 127 7. Effect of viscosity on water waves 129 References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
5. Heat-conduction equation 107 6. Burgers' model 108 7. Linearized Navier-Stokes equations 111 8. Limiting cases for very small Reynolds numbers 112 9. Limiting cases for very large Reynolds numbers 113 10. Mathematical structure for boundary layer theory 115 References 117 VII. THEORY OF VERY SLOW MOTION 118 1. Introduction 118 2. The differential equations of very slow motion 119 3. The motion of a sphere in a viscous fluid 120 4. Oseen's improvement of Stokes' theory 122 5. Theory of lubrication 125 6. The Hele-Shaw's flow pattern 127 7. Effect of viscosity on water waves 129 References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
6. Burgers' model 108 7. Linearized Navier-Stokes equations 111 8. Limiting cases for very small Reynolds numbers 112 9. Limiting cases for very large Reynolds numbers 113 10. Mathematical structure for boundary layer theory 115 References 117 VII. THEORY OF VERY SLOW MOTION 118 1. Introduction 118 2. The differential equations of very slow motion 119 3. The motion of a sphere in a viscous fluid 120 4. Oseen's improvement of Stokes' theory 122 5. Theory of lubrication 125 6. The Hele-Shaw's flow pattern 127 7. Effect of viscosity on water waves 129 References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
7. Linearized Navier-Stokes equations 111 8. Limiting cases for very small Reynolds numbers 112 9. Limiting cases for very large Reynolds numbers 113 10. Mathematical structure for boundary layer theory 115 References 117 VII. THEORY OF VERY SLOW MOTION 118 1. Introduction 118 2. The differential equations of very slow motion 119 3. The motion of a sphere in a viscous fluid 120 4. Oseen's improvement of Stokes' theory 122 5. Theory of lubrication 125 6. The Hele-Shaw's flow pattern 127 7. Effect of viscosity on water waves 129 References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
8. Limiting cases for very small Reynolds numbers 112 9. Limiting cases for very large Reynolds numbers 113 10. Mathematical structure for boundary layer theory 115 References 117 VII. THEORY OF VERY SLOW MOTION 118 1. Introduction 118 2. The differential equations of very slow motion 119 3. The motion of a sphere in a viscous fluid 120 4. Oseen's improvement of Stokes' theory 122 5. Theory of lubrication 125 6. The Hele-Shaw's flow pattern 127 7. Effect of viscosity on water waves 129 References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
9. Limiting cases for very large Reynolds numbers 113 10. Mathematical structure for boundary layer theory 115 References 117 VII. THEORY OF VERY SLOW MOTION 118 1. Introduction 118 2. The differential equations of very slow motion 119 3. The motion of a sphere in a viscous fluid 120 4. Oseen's improvement of Stokes' theory 122 5. Theory of lubrication 125 6. The Hele-Shaw's flow pattern 127 7. Effect of viscosity on water waves 129 References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
10. Mathematical structure for boundary layer theory 115 References 117 VII. THEORY OF VERY SLOW MOTION 118 1. Introduction 118 2. The differential equations of very slow motion 119 3. The motion of a sphere in a viscous fluid 120 4. Oseen's improvement of Stokes' theory 122 5. Theory of lubrication 125 6. The Hele-Shaw's flow pattern 127 7. Effect of viscosity on water waves 129 References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
References 117 VII. THEORY OF VERY SLOW MOTION 118 1. Introduction 118 2. The differential equations of very slow motion 119 3. The motion of a sphere in a viscous fluid 120 4. Oseen's improvement of Stokes' theory 122 5. Theory of lubrication 125 6. The Hele-Shaw's flow pattern 127 7. Effect of viscosity on water waves 129 References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
VII. THEORY OF VERY SLOW MOTION 118 1. Introduction 118 2. The differential equations of very slow motion 119 3. The motion of a sphere in a viscous fluid 120 4. Oseen's improvement of Stokes' theory 122 5. Theory of lubrication 125 6. The Hele-Shaw's flow pattern 127 7. Effect of viscosity on water waves 129 References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
1. Introduction 118 2. The differential equations of very slow motion 119 3. The motion of a sphere in a viscous fluid 120 4. Oseen's improvement of Stokes' theory 122 5. Theory of lubrication 125 6. The Hele-Shaw's flow pattern 127 7. Effect of viscosity on water waves 129 References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
2. The differential equations of very slow motion 119 3. The motion of a sphere in a viscous fluid 120 4. Oseen's improvement of Stokes' theory 122 5. Theory of lubrication 125 6. The Hele-Shaw's flow pattern 127 7. Effect of viscosity on water waves 129 References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
3. The motion of a sphere in a viscous fluid 120 4. Oseen's improvement of Stokes' theory 122 5. Theory of lubrication 125 6. The Hele-Shaw's flow pattern 127 7. Effect of viscosity on water waves 129 References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
4. Oseen's improvement of Stokes' theory 122 5. Theory of lubrication 125 6. The Hele-Shaw's flow pattern 127 7. Effect of viscosity on water waves 129 References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
5. Theory of lubrication 125 6. The Hele-Shaw's flow pattern 127 7. Effect of viscosity on water waves 129 References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
6. The Hele-Shaw's flow pattern 127 7. Effect of viscosity on water waves 129 References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
7. Effect of viscosity on water waves 129 References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
References 131 VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
VIII. THE BOUNDARY LAYER EQUATIONS 132 1. Introduction 132
1. Introduction 132
2. Two-dimensional boundary layer over a flat plate 134
3. Two-dimensional boundary layer over a curved surface 137
4. Axially symmetrical flow of boundary layer
5. Three-dimensional boundary layer
6. Boundary layer equations in rotating coordinates 145
7. Boundary conditions
8. Momentum integral equations of boundary layer flow 149
9. Von Mises transformation
10. Boundary layer equations in integral form
11. Method of series expansion 157
12. Some properties of the boundary layer equations 160
13. The "similar" solutions of the boundary layer equations 162
14. Initial value problem of boundary layer equations 167
15. The analogy between skin friction and heat conduction 169
References

ix

CHAPTER	PAGE
IX. EXACT SOLUTIONS OF TWO-DIMENSIONAL	
BOUNDARY LAYER EQUATIONS OF STEADY	
FLOW	173
1. Introduction	173
2. The boundary layer of an incompressible fluid on a flat	
plate. Blasius solution	175
3. The boundary layer of an incompressible fluid on a sur-	
face with pressure gradient	179
4. The boundary layer in the entrance section of a channel	182
5. The boundary layer on a circular cylinder	185
6. The wake behind a flat plate placed in the direction of	
a uniform flow	187
7. The jet mixing region of an incompressible fluid	189
(a) Laminar mixing of two uniform streams of an in-	
compressible fluid	190
(b) Plane jet from a long narrow slit mixing with the	
surrounding fluid at rest	191
8. The boundary layer of a compressible fluid on a flat	
plate	193
(a) Von Kármán-Tsien method	194
(b) Chapman-Rubesin method	197
9. The boundary layer of a compressible fluid. Crocco's	
$\mathbf{method} \qquad \ldots \qquad $	201
10. The boundary layer of a compressible fluid with pres-	
sure gradient. Howarth-Stewartson method	206
11. The general problem of boundary layer of compressible	;
fluid. Cope and Hartree method	209
12. The boundary layer of a compressible fluid with vari-	•
able properties	211
13. Hypersonic viscous flow over a flat plate	215
14. The jet mixing of a compressible fluid	217
15. Forced and free convections	219
References	224
Y APPROXIMATE SOLUTIONS OF TWO DIMENSIONAL	
ROUNDARY LAVER FOULTIONS OF STEADS	1 T
FLOW	997
1. Introduction	- 227
2. von Karman's momentum theorem and the boundary	-
layer of incompressible fluid along a flat plate	. 228

х

TABLE OF CONTENTS

3. The boundary layer over a surface with pressure gradient. Von Kármán-Pohlhausen method 232 4. Simplified solution of von Kármán momentum integral equation 237 5. Boundary layer flow near the separation point. Von Kármán-Millikan method 239 6. Approximate discussions for the flow in convergent and divergent channels 244 7. Generalized Pohlhausen method for boundary layer of a compressible fluid. (1) Howarth-Stewartson method 246 8. Generalized Pohlhausen method for boundary layer of a compressible fluid. (2) Kalikhman method 248 9. Generalized Pohlhausen method for boundary layer of a compressible fluid. (3) Cope-Hartree method 251 10. Hypersonic boundary layer over a wedge 253 References 260 XI. AXIALLY SYMMETRICAL AND THREE-DIMEN-SIONAL BOUNDARY LAYER FLOWS 261 1. Introduction 261 2. Boundary layer on a body of revolution. Mangler's transformation 262 3. Axially symmetrical jet mixing 264 (b) Compressible fluid 264 (b) Compressible fluid 264 (b) Compressible fluid 264 (b) Compressible fluid 264 (c) The boundary layer of an incompressible fluid over in finite yawed wings 269 6. The boundary layer of an incompress	CHAPTER	PAGE
dient. Von Kármán-Pohlhausen method 232 4. Simplified solution of von Kármán momentum integral 237 5. Boundary layer flow near the separation point. Von Xármán-Millikan method 239 6. Approximate discussions for the flow in convergent and 239 6. Approximate discussions for the flow in convergent and 244 7. Generalized Pohlhausen method for boundary layer of 246 8. Generalized Pohlhausen method for boundary layer of 246 8. Generalized Pohlhausen method for boundary layer of 248 9. Generalized Pohlhausen method for boundary layer of 251 10. Hypersonic boundary layer over a wedge 253 References 260 XI. AXIALLY SYMMETRICAL AND THREE-DIMEN- 261 1. Introduction 261 2. Boundary layer on a body of revolution. Mangler's 262 3. Axially symmetrical jet mixing 264 (a) Incompressible fluid 264 (b) Compressible fluid 266 4. Revolving flow of an incompressible fluid over in 267 5. The boundary layer of an incompressible fluid over in 267 5. The boundary layer of an incompressible fluid over in 269 6. The boundary layer o	3. The boundary layer over a surface with pressure gra-	
4. Simplified solution of von Karman momentum integral equation 237 5. Boundary layer flow near the separation point. Von Kármán-Millikan method 239 6. Approximate discussions for the flow in convergent and divergent channels 244 7. Generalized Pohlhausen method for boundary layer of a compressible fluid. (1) Howarth-Stewartson method 246 8. Generalized Pohlhausen method for boundary layer of a compressible fluid. (2) Kalikhman method 248 9. Generalized Pohlhausen method for boundary layer of a compressible fluid. (3) Cope-Hartree method 251 10. Hypersonic boundary layer over a wedge 253 References 260 XI. AXIALLY SYMMETRICAL AND THREE-DIMEN- SIONAL BOUNDARY LAYER FLOWS 261 1. Introduction 262 3. Axially symmetrical jet mixing 264 (a) Incompressible fluid 264 (b) Compressible fluid 264 (b) Compressible fluid 264 (c) Compressible fluid 264 (b) Compressible fluid 264 (c) The boundary layer of an incompressible fluid over a fixed plate 267 5. The boundary layer of an incompressible fluid on a rotating blade 276 7. Three-dimensional boundary layer flow of a compres- sible fluid 281	dient. Von Kármán-Pohlhausen method	232
237 5. Boundary layer flow near the separation point. Von Kármán-Milikan method 239 6. Approximate discussions for the flow in convergent and divergent channels 244 7. Generalized Pohlhausen method for boundary layer of a compressible fluid. (1) Howarth-Stewartson method 246 8. Generalized Pohlhausen method for boundary layer of a compressible fluid. (2) Kalikhman method 248 9. Generalized Pohlhausen method for boundary layer of a compressible fluid. (3) Cope-Hartree method 251 10. Hypersonic boundary layer over a wedge 253 References 260 XI. AXIALLY SYMMETRICAL AND THREE-DIMEN- SIONAL BOUNDARY LAYER FLOWS 261 1. Introduction 261 2. Boundary layer on a body of revolution. Mangler's transformation 262 3. Axially symmetrical jet mixing 264 (a) Incompressible fluid 264 (b) Compressible fluid 264 (b) Compressible fluid 264 (c) The boundary layer of an incompressible fluid over a fixed plate 267 5. The boundary layer of an incompressible fluid on a rotating blade 276 7. Three-dimensional boundary layer flow of a compres- sible fluid 281 8. The boundary layer of a compressible fluid on an in- finite yawed cylinder 283 <td>4. Simplified solution of von Karman momentum integral</td> <td>0.07</td>	4. Simplified solution of von Karman momentum integral	0.07
3. Boundary layer now near the separation point. 239 6. Approximate discussions for the flow in convergent and divergent channels 244 7. Generalized Pohlhausen method for boundary layer of a compressible fluid. (1) Howarth-Stewartson method 246 8. Generalized Pohlhausen method for boundary layer of a compressible fluid. (2) Kalikhman method 248 9. Generalized Pohlhausen method for boundary layer of a compressible fluid. (3) Cope-Hartree method 251 10. Hypersonic boundary layer over a wedge 253 References 260 XI. AXIALLY SYMMETRICAL AND THREE-DIMEN-SIONAL BOUNDARY LAYER FLOWS 261 1. Introduction 261 2. Boundary layer on a body of revolution. Mangler's transformation 262 3. Axially symmetrical jet mixing 264 (a) Incompressible fluid 264 (b) Compressible fluid 266 4. Revolving flow of an incompressible fluid over a fixed plate 267 5. The boundary layer of an incompressible fluid on a rotating blade 276 7. Three-dimensional boundary layer flow of a compressible fluid 281 8. The boundary layer of a notating body of revolution 283 9. Boundary layer of a compressible fluid on an infinite yawed cylinder 283 9. Boundary laye	equation	237
6. Approximate discussions for the flow in convergent and divergent channels 244 7. Generalized Pohlhausen method for boundary layer of a compressible fluid. (1) Howarth-Stewartson method 246 8. Generalized Pohlhausen method for boundary layer of a compressible fluid. (2) Kalikhman method 248 9. Generalized Pohlhausen method for boundary layer of a compressible fluid. (3) Cope-Hartree method 251 10. Hypersonic boundary layer over a wedge 253 References 260 XI. AXIALLY SYMMETRICAL AND THREE-DIMEN-SIONAL BOUNDARY LAYER FLOWS 261 1. Introduction 261 2. Boundary layer on a body of revolution. Mangler's transformation 262 3. Axially symmetrical jet mixing 264 (a) Incompressible fluid 264 (b) Compressible fluid 264 (c) The boundary layer of an incompressible fluid over a fixed plate 267 5. The boundary layer of an incompressible fluid or a rotating blade 276 7. Three-dimensional boundary layer flow of a compressible fluid on a rotating blade 281 8. The boundary layer of a compressible fluid on an infinite yawed cylinder 283 9. Boundary layer of a compressible fluid on an infinite yawed cylinder 283 9. Boundary layer of a cotating body of revolution 285 <td>5. Boundary layer now near the separation point. Von Kármán-Millikan method</td> <td>239</td>	5. Boundary layer now near the separation point. Von Kármán-Millikan method	239
divergent channels 244 7. Generalized Pohlhausen method for boundary layer of a compressible fluid. (1) Howarth-Stewartson method 246 8. Generalized Pohlhausen method for boundary layer of a compressible fluid. (2) Kalikhman method 248 9. Generalized Pohlhausen method for boundary layer of a compressible fluid. (3) Cope-Hartree method 251 10. Hypersonic boundary layer over a wedge 253 References 260 XI. AXIALLY SYMMETRICAL AND THREE-DIMEN- SIONAL BOUNDARY LAYER FLOWS 261 1. Introduction 261 2. Boundary layer on a body of revolution. Mangler's transformation 262 3. Axially symmetrical jet mixing 264 (a) Incompressible fluid 264 (b) Compressible fluid 264 (b) Compressible fluid 266 4. Revolving flow of an incompressible fluid over a fixed plate 267 5. The boundary layer of an incompressible fluid over in- finite yawed wings 269 6. The boundary layer of an incompressible fluid on a rotating blade 276 7. Three-dimensional boundary layer flow of a compres- sible fluid 281 8. The boundary layer of a compressible fluid on an in- finite yawed cylinder 283 9. Boundary layer of a rotating body of revolution 283	6. Approximate discussions for the flow in convergent and	-00
7. Generalized Pohlhausen method for boundary layer of a compressible fluid. (1) Howarth-Stewartson method 246 8. Generalized Pohlhausen method for boundary layer of a compressible fluid. (2) Kalikhman method 248 9. Generalized Pohlhausen method for boundary layer of a compressible fluid. (3) Cope-Hartree method 251 10. Hypersonic boundary layer over a wedge 253 References 260 XI. AXIALLY SYMMETRICAL AND THREE-DIMEN- SIONAL BOUNDARY LAYER FLOWS 261 1. Introduction 261 2. Boundary layer on a body of revolution. Mangler's transformation 262 3. Axially symmetrical jet mixing 264 (a) Incompressible fluid 264 (b) Compressible fluid 264 (b) Compressible fluid 264 (c) Compressible fluid 264 (a) Incompressible fluid 264 (b) Compressible fluid 266 4. Revolving flow of an incompressible fluid over a fixed plate 267 5. The boundary layer of an incompressible fluid over in- finite yawed wings 269 6. The boundary layer of an incompressible fluid on a rotating blade 276 7. Three-dimensional boundary layer flow of a compres- sible fluid 281 8. The boundary layer of a compressible fl	divergent channels	244
a compressible fluid. (1) Howarth-Stewartson method 246 8. Generalized Pohlhausen method for boundary layer of a compressible fluid. (2) Kalikhman method 248 9. Generalized Pohlhausen method for boundary layer of a compressible fluid. (3) Cope-Hartree method 251 10. Hypersonic boundary layer over a wedge 253 References 260 XI. AXIALLY SYMMETRICAL AND THREE-DIMEN- SIONAL BOUNDARY LAYER FLOWS 261 1. Introduction 261 2. Boundary layer on a body of revolution. Mangler's transformation 262 3. Axially symmetrical jet mixing 264 (a) Incompressible fluid 264 (b) Compressible fluid 266 4. Revolving flow of an incompressible fluid over a fixed plate 267 5. The boundary layer of an incompressible fluid over in- finite yawed wings 269 6. The boundary layer of an incompressible fluid on a rotating blade 276 7. Three-dimensional boundary layer flow of a compres- sible fluid 281 8. The boundary layer of a compressible fluid on an in- finite yawed cylinder 283 9. Boundary layer of a rotating body of revolution 285 10. Decay of a swirl in an axially symmetrical jet 288	7. Generalized Pohlhausen method for boundary layer of	
method 246 8. Generalized Pohlhausen method for boundary layer of a compressible fluid. (2) Kalikhman method 248 9. Generalized Pohlhausen method for boundary layer of a compressible fluid. (3) Cope-Hartree method 251 10. Hypersonic boundary layer over a wedge 253 References 260 XI. AXIALLY SYMMETRICAL AND THREE-DIMEN- SIONAL BOUNDARY LAYER FLOWS 261 1. Introduction 261 2. Boundary layer on a body of revolution. Mangler's transformation 262 3. Axially symmetrical jet mixing 264 (a) Incompressible fluid 264 (b) Compressible fluid 266 4. Revolving flow of an incompressible fluid over a fixed plate 267 5. The boundary layer of an incompressible fluid over in- finite yawed wings 269 6. The boundary layer of an incompressible fluid on a rotating blade 276 7. Three-dimensional boundary layer flow of a compres- sible fluid 281 8. The boundary layer of a compressible fluid on an in- finite yawed cylinder 283 9. Boundary layer of a rotating body of revolution 285 10. Decay of a swirl in an axially symmetrical jet 288	a compressible fluid. (1) Howarth-Stewartson	
8. Generalized Pohlhausen method for boundary layer of a compressible fluid. (2) Kalikhman method 248 9. Generalized Pohlhausen method for boundary layer of a compressible fluid. (3) Cope-Hartree method 251 10. Hypersonic boundary layer over a wedge 253 References 260 XI. AXIALLY SYMMETRICAL AND THREE-DIMEN- SIONAL BOUNDARY LAYER FLOWS 261 1. Introduction 261 2. Boundary layer on a body of revolution. Mangler's transformation 262 3. Axially symmetrical jet mixing 264 (a) Incompressible fluid 264 (b) Compressible fluid 266 4. Revolving flow of an incompressible fluid over a fixed plate 267 5. The boundary layer of an incompressible fluid over in- finite yawed wings 269 6. The boundary layer of an incompressible fluid over in- finite yawed wings 269 7. Three-dimensional boundary layer flow of a compres- sible fluid 281 8. The boundary layer of a compressible fluid on an in- finite yawed cylinder 283 9. Boundary layer of a rotating body of revolution 285 10. Decay of a swirl in an axially symmetrical jet 288 8. References 290	method	246
a compressible fluid. (2) Kalikhman method 248 9. Generalized Pohlhausen method for boundary layer of a compressible fluid. (3) Cope-Hartree method 251 10. Hypersonic boundary layer over a wedge 253 References 260 XI. AXIALLY SYMMETRICAL AND THREE-DIMEN- SIONAL BOUNDARY LAYER FLOWS 261 1. Introduction 261 2. Boundary layer on a body of revolution. Mangler's transformation 262 3. Axially symmetrical jet mixing 264 (a) Incompressible fluid 266 4. Revolving flow of an incompressible fluid over a fixed plate 267 5. The boundary layer of an incompressible fluid over in- finite yawed wings 269 6. The boundary layer of an incompressible fluid on a rotating blade 276 7. Three-dimensional boundary layer flow of a compres- sible fluid 281 8. The boundary layer of a compressible fluid on an in- finite yawed cylinder 283 9. Boundary layer of a rotating body of revolution 285 10. Decay of a swirl in an axially symmetrical jet 288	8. Generalized Pohlhausen method for boundary layer of	a (a
9. Generalized Poninausen method for boundary layer of a compressible fluid. (3) Cope-Hartree method 251 10. Hypersonic boundary layer over a wedge 253 References 260 XI. AXIALLY SYMMETRICAL AND THREE-DIMEN- SIONAL BOUNDARY LAYER FLOWS 261 1. Introduction 261 2. Boundary layer on a body of revolution. Mangler's transformation 262 3. Axially symmetrical jet mixing 264 (a) Incompressible fluid 264 (b) Compressible fluid 266 4. Revolving flow of an incompressible fluid over a fixed plate 267 5. The boundary layer of an incompressible fluid over in- finite yawed wings 269 6. The boundary layer of an incompressible fluid on a rotating blade 276 7. Three-dimensional boundary layer flow of a compres- sible fluid 281 8. The boundary layer of a compressible fluid on an in- finite yawed cylinder 283 9. Boundary layer of a rotating body of revolution 285 10. Decay of a swirl in an axially symmetrical jet 288 References 290	a compressible fluid. (2) Kalikhman method	248
10. Hypersonic boundary layer over a wedge 253 References 260 XI. AXIALLY SYMMETRICAL AND THREE-DIMEN- SIONAL BOUNDARY LAYER FLOWS 261 1. Introduction 261 2. Boundary layer on a body of revolution. Mangler's transformation 262 3. Axially symmetrical jet mixing 264 (a) Incompressible fluid 264 (b) Compressible fluid 266 4. Revolving flow of an incompressible fluid over a fixed plate 267 5. The boundary layer of an incompressible fluid over in- finite yawed wings 269 6. The boundary layer of an incompressible fluid on a rotating blade 276 7. Three-dimensional boundary layer flow of a compres- sible fluid 281 8. The boundary layer of a compressible fluid on an in- finite yawed cylinder 283 9. Boundary layer of a rotating body of revolution 285 10. Decay of a swirl in an axially symmetrical jet 288 References 290	9. Generalized Poninausen method for boundary layer of	951
10. Hypersonic boundary layer over a wedge 253 References 260 XI. AXIALLY SYMMETRICAL AND THREE-DIMEN- SIONAL BOUNDARY LAYER FLOWS 261 1. Introduction 261 2. Boundary layer on a body of revolution. Mangler's transformation 262 3. Axially symmetrical jet mixing 264 (a) Incompressible fluid 264 (b) Compressible fluid 266 4. Revolving flow of an incompressible fluid over a fixed plate 267 5. The boundary layer of an incompressible fluid over in- finite yawed wings 269 6. The boundary layer of an incompressible fluid on a rotating blade 276 7. Three-dimensional boundary layer flow of a compres- sible fluid 281 8. The boundary layer of a compressible fluid on an in- finite yawed cylinder 283 9. Boundary layer of a rotating body of revolution 285 10. Decay of a swirl in an axially symmetrical jet 288 References 290	10 Hypersonie boundary layer over a wedge	201 252
XI. AXIALLY SYMMETRICAL AND THREE-DIMEN- SIONAL BOUNDARY LAYER FLOWS 261 1. Introduction 261 2. Boundary layer on a body of revolution. Mangler's transformation 262 3. Axially symmetrical jet mixing 264 (a) Incompressible fluid 264 (b) Compressible fluid 266 4. Revolving flow of an incompressible fluid over a fixed plate 267 5. The boundary layer of an incompressible fluid over in- finite yawed wings 269 6. The boundary layer of an incompressible fluid on a rotating blade 276 7. Three-dimensional boundary layer flow of a compres- sible fluid 281 8. The boundary layer of a compressible fluid on an in- finite yawed cylinder 283 9. Boundary layer of a rotating body of revolution 285 10. Decay of a swirl in an axially symmetrical jet 288	References	200 260
XI. AXIALLY SYMMETRICAL AND THREE-DIMEN- SIONAL BOUNDARY LAYER FLOWS 261 1. Introduction 261 2. Boundary layer on a body of revolution. Mangler's transformation 262 3. Axially symmetrical jet mixing 264 (a) Incompressible fluid 264 (b) Compressible fluid 266 4. Revolving flow of an incompressible fluid over a fixed plate 267 5. The boundary layer of an incompressible fluid over in- finite yawed wings 269 6. The boundary layer of an incompressible fluid on a rotating blade 276 7. Three-dimensional boundary layer flow of a compres- sible fluid 281 8. The boundary layer of a compressible fluid on an in- finite yawed cylinder 283 9. Boundary layer of a rotating body of revolution 285 10. Decay of a swirl in an axially symmetrical jet 288		200
SIONAL BOUNDARY LAYER FLOWS2611. Introduction2612. Boundary layer on a body of revolution. Mangler's transformation2623. Axially symmetrical jet mixing264(a) Incompressible fluid264(b) Compressible fluid2664. Revolving flow of an incompressible fluid over a fixed plate2675. The boundary layer of an incompressible fluid over in- finite yawed wings2696. The boundary layer of an incompressible fluid on a rotating blade2767. Three-dimensional boundary layer flow of a compres- sible fluid2818. The boundary layer of a compressible fluid on an in- finite yawed cylinder2839. Boundary layer of a rotating body of revolution28510. Decay of a swirl in an axially symmetrical jet288References290	XI. AXIALLY SYMMETRICAL AND THREE-DIMEN-	
1. Introduction 261 2. Boundary layer on a body of revolution. Mangler's transformation 262 3. Axially symmetrical jet mixing 264 (a) Incompressible fluid 264 (b) Compressible fluid 266 4. Revolving flow of an incompressible fluid over a fixed plate 267 5. The boundary layer of an incompressible fluid over infinite yawed wings 269 6. The boundary layer of an incompressible fluid on a rotating blade 276 7. Three-dimensional boundary layer flow of a compressible fluid on an infinite yawed cylinder 283 9. Boundary layer of a rotating body of revolution 285 10. Decay of a swirl in an axially symmetrical jet 288	SIONAL BOUNDARY LAYER FLOWS	261
2. Boundary layer on a body of revolution. Mangler's transformation 262 3. Axially symmetrical jet mixing 264 (a) Incompressible fluid 264 (b) Compressible fluid 266 4. Revolving flow of an incompressible fluid over a fixed plate 267 5. The boundary layer of an incompressible fluid over infinite yawed wings 269 6. The boundary layer of an incompressible fluid on a rotating blade 276 7. Three-dimensional boundary layer flow of a compressible fluid 281 8. The boundary layer of a compressible fluid on an infinite yawed cylinder 283 9. Boundary layer of a rotating body of revolution 285 10. Decay of a swirl in an axially symmetrical jet 288	1. Introduction	261
transformation2623. Axially symmetrical jet mixing264(a) Incompressible fluid264(b) Compressible fluid2664. Revolving flow of an incompressible fluid over a fixedplate2675. The boundary layer of an incompressible fluid over infinite yawed wings2696. The boundary layer of an incompressible fluid on arotating blade2767. Three-dimensional boundary layer flow of a compressible fluid2818. The boundary layer of a compressible fluid on an infinite yawed cylinder2839. Boundary layer of a rotating body of revolution28510. Decay of a swirl in an axially symmetrical jet288References290	2. Boundary layer on a body of revolution. Mangler's	
 3. Axially symmetrical jet mixing	transformation	262
 (a) Incompressible fluid	3. Axially symmetrical jet mixing	264
 (b) Compressible fluid	(a) Incompressible fluid	264
 4. Revolving flow of an incompressible fluid over a fixed plate	(b) Compressible fluid	266
plate 267 5. The boundary layer of an incompressible fluid over infinite yawed wings 269 6. The boundary layer of an incompressible fluid on a rotating blade 269 7. Three-dimensional boundary layer flow of a compressible fluid 276 7. Three-dimensional boundary layer flow of a compressible fluid 281 8. The boundary layer of a compressible fluid on an infinite yawed cylinder 283 9. Boundary layer of a rotating body of revolution 285 10. Decay of a swirl in an axially symmetrical jet 288 References 290	4. Revolving flow of an incompressible fluid over a fixed	~~~
 5. The boundary layer of an incompressible fluid over infinite yawed wings		267
6. The boundary layer of an incompressible fluid on a rotating blade 276 7. Three-dimensional boundary layer flow of a compressible fluid 281 8. The boundary layer of a compressible fluid on an infinite yawed cylinder 283 9. Boundary layer of a rotating body of revolution 285 10. Decay of a swirl in an axially symmetrical jet 288 References 290	5. The boundary layer of an incompressible fluid over in-	000
 6. The boundary layer of an incompressible huid on a rotating blade	finite yawed wings	269
 7. Three-dimensional boundary layer flow of a compressible fluid 8. The boundary layer of a compressible fluid on an infinite yawed cylinder 9. Boundary layer of a rotating body of revolution 283 10. Decay of a swirl in an axially symmetrical jet 288 References 290 	o. The boundary layer of an incompressible huid on a	976
 8. The boundary layer of a compressible fluid on an infinite yawed cylinder 9. Boundary layer of a rotating body of revolution 283 10. Decay of a swirl in an axially symmetrical jet 288 280 	7 Three-dimensional boundary layer flow of a compros	210
 8. The boundary layer of a compressible fluid on an infinite yawed cylinder 9. Boundary layer of a rotating body of revolution 10. Decay of a swirl in an axially symmetrical jet 288 References 290 	sible fluid	281
finite yawed cylinder 283 9. Boundary layer of a rotating body of revolution 285 10. Decay of a swirl in an axially symmetrical jet 288 References 290	8. The boundary layer of a compressible fluid on an in-	201
9. Boundary layer of a rotating body of revolution28510. Decay of a swirl in an axially symmetrical jet288References290	finite vawed cylinder	283
10. Decay of a swirl in an axially symmetrical jet288References290	9. Boundary layer of a rotating body of revolution	285
References	10. Decay of a swirl in an axially symmetrical iet	288
	References	290

CHAPTER	PAGE
XII. UNSTEADY FLOWS IN BOUNDARY LAYER	. 292
1. Introduction	. 292
2. Development of the boundary layer of an incompre	s-
sible fluid by sudden motion	. 293
(a) Two-dimensional boundary layer	. 295
(b) Axially symmetric boundary layer	. 297
3. Development of the boundary layer of an incompre	:s-
sible fluid by uniformly accelerated motion	. 298
4. The boundary layer of an incompressible field wi	tn 300
5 Unsteady flow of a compressible fluid near an infini	ite
flat plate	303
6. Unsteady boundary layer flow of a compressible fluid	l. 306
7. Orr-Sommerfeld equation and its solutions	. 309
8. Stability of the flow of a boundary layer of an inco	n-
pressible fluid	. 313
9. Lees-Lin equations and their solutions	. 317
10. Stability of the flow of boundary layer of a compres	si-
ble fluid	. 321
11. Other problems of stability of laminar flow .	. 325
References	. 327
XIII. BOUNDARY LAYER FLOWS WITH SUCTION AN	1D
WITH INJECTION	. 329
1. Introduction	. 329
2. Prandtl's estimation of permissible pressure gradie	ent
without separation	. 330
3. Boundary layer flow of an incompressible fluid w	\mathbf{ith}
suction	. 332
4. Boundary layer flow of a compressible fluid with su	uc-
${\rm tion} \qquad \ldots \qquad $. 337
5. On heat transfer over a sweat-cooled surface in lamin	ıar
compressible flow	. 339
6. Stability of boundary layer flow with suction or inj	ec-
${\rm tion} \qquad \ldots \qquad $. 345
References	. 346
XIV LINEARIZED THEORY OF VISCOUS COMPRESSIR	\mathbf{LE}
FLUID	348
1 Introduction	349
2 Singular perturbation problem	350
a suburi berearen brobien	

xii

TABLE OF CONTENTS

CHAPTER	PAGE
3. Characteristics	351
4. Linearization of the fundamental equations for a vis-	
cous compressible fluid	355
5. Splitting of the linearized equations. Longitudinal and	
transversal waves	358
6. Basic wave phenomena	360
7. Reflection of a weak shock wave from a boundary layer	
along a flat plate	363
8. Linearized theory of the jet mixing	367
9. Viscosity effect on sound speed	370
10. Method of expansion in a small parameter	372
References	376
Author Index	378
Subject Index	381

xiii