CONTHNTSS

Preface (xi)
BASIC DEFINITIONS 1
INTRODUCTION 7
CHAPTER I. THEORY OF DEFORMATIONS

1. Displacements 13
2. Change in length of a linear element 18
3. Change in direction of a linear element 20
4. Shear 25
5. Strain components 27
6. Transformation of strain components with change of co-ordinate axes 30
7. Principal directions of deformation 32
8. Fraluation of the principal extensions; strain invariants 37
9. Transformation of parameters $e_{i j}$ and ω_{k} with change of co-ordinate axes 39
10. Geametrical meaning of parameters ω_{k} 42
11. General picture of deformation in the neighbourhood of an arbitrary point in the body 46
12. Relative change in volume 49
13. Simplifications possible when linear and shear strains are small 51
14. Case when angles of rotation, as well as strains, are small 53
15. Conditions of continuity of strain 57
CHAPTER II. EQUILIBRIUM OF AN ELEMENT OF VOLUNE
16. Stresses63
17. Change in components of stress due to change of co-ordinate system 69
18. Principal directions of stress; invariants of the stress tensor 72
19. Maximum values of tangential stresses 74
20. Mean tangential stress 78
21. Equilibrium conditions for an elementary parallelepiped in a deformed body 81
CHAPTEFR II (contd.)
22. Transformation of the equations of equilibriumof an element of volume into Cartesian co-ordinates of points in the body before de-
formation 85
23. Symmetry of generalized stresses 92
24. Two additional forms for the equations of equilibrium of an element of volume 97
25. Simplified equilibrium equations for small extensions and shear strains 102
26. Simplified equilibrium equations for small rotations 105
27. Transfer to linear equations of equilibrium for an element of volume 105
28. Differential equations of motion of an element of volume in a solid body 108
29. Simple operations with tensors 109
30. Functional relations between two symmetric co-axial second-order tensors 116
GJAPTER III. STRAIN ENERGY AND CERTAIN RELATED PRIN- CIPLES. THE STRESS POTFNTIAL OF AN IDEALLY ELASTIC BODY AND THE RESULT- ING RELATIONS BETWEEN STRESSES AND STRAINS
31. Increment in the work of deformation 120
32. The principle of virtual displacementsfor solid bodies125
33. The derivation, from the principle of virtual displacements, of the differential equations of equilibrium for a deformed body and the corresponding equations for the boundary conditions - 129
34. Formulation of the boundary conditions for a solid body in equilibrium 131
35. Geometrically admissible displacements, statically admissible stresses, and the relations between the two 135
36. The principle of virtual displacements as a sequal to equation (5.2) 140
37. The principle of virtual changes in the state of stress 140
38. Potential strain energy of an elastic body 143
39. A further property of specific strain energy 147
40. Additional work of deformation 149
41. Total strain energy and its properties 153
CHAPTER III (contd.)
42. Castigliano's theorem 155
43. Some approximate methods for solution of problems in the theory of elasticity, based on the principle of virtual dis- placements 160
44. The choice of origin for displacements and strains 167
45. The relations between stresses and strains in isotropic elastic bodies 169
46. The relation between stresses and strains in anisotropic bodies; principal direc- tions of anisotropy 174
47. The thermodynamics of reversible deformation 178
48. Classification of the problems of the theory of elasticity 181
CHAPTER IV. CURVILINEAR CO-ORDINATES
49. An introduction to the theory of ortho- gonal curvilinear co-ordinates 186
50. Formulae for the strain components in an arbitrary orthogonal co-ordinate system 193
51. The equilibrium equations for an element of volume in orthogonal curvilinear co- ordinates 198
52. Strain energy (and related principles) in orthogonal curvilinear co-ordinates 204
CHAPTER V. THE GENERAL FORMULAE OF THE CLASSICAL (LINEAR) THEORY OF ELASTICITY
53. Linearization of the expressions for strains 212
54. Determination of the rotation vector ω for given strains 212
55. Determination of the displacement vector for given strain components214
56. The uniqueness of the determination of dis- placements and angles of rotation 216
57. Equilibrium conditions within a body and
on its surface
on its surface 220 220
58. Hooke's law - 222
59. The differential equations of the linear theory of elasticity (in terms of dis- placements) 224
60. The general solution of homogeneous equa- tions in the theory of elasticity in the form suggested by Papkovich 228
CHAPTER ∇ (contd.)
61. Problems in the theory of elasticity in terms of stresses 231
62. The effect of rise in temperature in the body during deformation 233
63. Dynamic problems in the linear theory of elasticity 236
64. The specific strain energy of an isotropic body obeying Hooke's law 242
65. Clapeyron's formula 244
66. Determination of the specific additional work (of the first kind) for bodies which obey Hooke's law 245
67. The reciprocal theorem 246
68. The principle of minimum total energy and Castigliano's theorem for cases when the classical theory of elasticity may be applied 249
69. Proportionality of displacements to load; the principle of superposition 251
70. The theorems of existence and uniqueness of a solution to a problem in the linear theory of elasticity 255
71. Hooke's law for anisotropic bodies 260
72. Elements of symmetry in the elastic pro- perties of anisotropic bodies and their classification 26621. Transformation of the equations of theclassical theory of elasticity intoorthogonal curvilinear co-ordinates271
73. The equations of the linear theory of elasticity in cylindrical and spherical co-ordinates 275
CHAPTER VI. ST. VENANT'S PROBLEM
74. The semi-inverse method of St. Venant 282
75. St. Venant's principle 283
76. St. Venant's problem 284
77. Tension in a rod due to a longitudinal force 287
78. Bending in a rod due to a moment 288
79. Torsion of rods (general theory) 291
80. Other methods of solving torsion problems 299
81. Resultant tangential stresses (in theproblem of torsion) and some of theirproperties 303
CEAPTER VI (contd.)
82. The theorem of circulation of tangentialstress (in the problem of torsion)306
83. The torsion of a rod the cross-section of which is a circle or a circular ring 307
84. Torsion of a rod with elliptical cross- section 309
85. Stress concentration in a rod in torsion due to a small circular groove 311
86. Torsion of a rod the cross-section of which is an equilateral triangle 313
87. Torsion of a rod of rectangular section 316
88. Torsion of a rod the cross-section of which is in the form of a half ring 320
89. Prandtl's analogy 324
90. Torsion of simply connected thin-walled sections made up of rectangular strips 328
91. Torsion of thin-walled rods of doubly- connected cross-section (torsion of tubes) 331
92. Bending in a rod by a transverse force applied at its end 335
93. Shear centre 341
94. The shear centre of a rod the cross-section of which is in the form of a half-ring 346
95. Bending of a rod of elliptical cross-section 348
CHAPTER VII. THE PLANE PROBLEM IN THE THEORY OF ELASTICITY
96. Plane deformation 354
97. Airy's function. 358
98. The state of plane stress 359
99. The state of generalized plane stress 361
100. Airy's function expressed in terms of harmonic functions 367
101. Boundary conditions expressed in terms of Airy's function for given external forces on the surface of the body - 371
102. Displacements expressed in terms of Airy's function - 374
103. The plane problem in curvilinear co-ordinates 377
104. The plane problem in complex form 381
105. An investigation of the form of the func- tions $\varphi(z)$ and $\psi(z)$. 384
106. The complex form of the boundary conditions for the plane problem 387
CHAPTER VII (contd.)
107. Tranaformation of the boundary conditions to curvilinear co-ordinates 390
108. Conformal transformation of regions into a circle of unit radius 397
109. Solution of the plane problem for a circular cylinder (or for a circular plate) 399
110. Stress concentration in a flat plate with a circular hole 403
111. The method of power series (indeterminate coefficients) as a general method of solving a plane problem 408
112. The modified method of indeterminate coefficients 413
113. Stress concentration in the neighbourhood of an elliptical hole 417
114. Stress concentration in the neighbourhood of a square hole 420
115. The plane problem for a half-plane 426
116. Forces distributed along a line, concen- trated forces and the functions which represent them 436
117. A concentrated force acting on a half- plane (Flamant's problem) 442
REFERENCES 446

Publisher's notice to readers on the supply of an English translation of any Russian article mentioned bibliographically or referred to in this publication.

The Pergamon Institute has made arrangements with the Institute of Scientific Information of the U.S.S.R. Academy of Sciences whereby they can obtain rapidly a copy of any article originally published in the open literature of the U.S.S.R.

We are therefore in a position to supply readers with a translation (into English or any other language that may be needed) of any article referred to in this publication, at a reasonable price under the cost-sharing plan.

Readers wishing to avail themselves of this service should address their request to the Administrative Secretary, The Pergamon Institute at either 122 East 55th Street, New York 22, N.Y. or Headington Hill Hall, Oxford.

