Preface BASIC DE	• •	NC	•	•	•	•	•	•	•	(xi) 1
INTRODUC		• 60	•	•	•	•	•	•	•	-
INTRODUC	TION .	•	•	•	•	•	•	•	•	7
CHAPTER	I. T	HEORY C	FDEF	ORMAI	IONS					
1.	Displac	ements	•	•	•	•	•	•	•	13
2.	Change							•	•	18
3.	Change :	in dire	ection	of a	line	ar el	ement		•	20
4.	Shear	•	•	•	•	•	•	•	•	25
5.	Strain			•	•	•	•	•	•	27
6.	Transfo					onent	s wit	h		
_		of co-				•	•	•	٠	30
7.	Princip							•	•	32
8.	Evaluat:	ion of invari	-	rinci	.pal e	xtens	ions			37
9.	Transfo			arame	ters	e:: 8	თ.შ. თ.	•	•	21
		hange o								39
10.	Geometr						Ψ.			42
11.	General neighb	pictur ourhood	re of	defor	matio	n in	the	•	•	•
10	in the	•	•.	•_	•	•	•	•	•	46
12.	Relativ		•			•	•	•	٠	49
13.	Simplif and sh	ication ear str				line	ar			51
14.	Case wh	en angl	es of	rota	tion.	88 W	rell a		•	
•		s. are			· · · · · · · · · · · · · · · · · · ·					53
15.	Conditi				ofs	trair	1 .	•	•	57
CHAPTER	יד ד	QUILIBE		TP ANT	TPT. TPM TP			n te		
1.	Stresse	-		r An			AOD(63
2.	Change	-	onent	• ^f	•	a due	. ÷	• hongo	•	0)
-•		ordinat				•	•			69
3.	Princip	al dire	ction	s of	stres	s; i	nvari	ants		-
		stress			•		•	•		72
4.	Maximum	values	ofta	angen	itial	stres	888			74
5.	Mean ta				•			•	•	78
6.	Equilib				or an	elen	entar	v	-	• -
		elepipe						•	•	81

CHAPTER II (contd.)

um.
. 85
. 92
•)2
• 97
• 21
100
. 102
. 105
. 105
. 108
. 109
. 116
-
ATNS
AINS
AINS . 120
. 120
. 120 . 125
. 120 . 125 . 129
. 120 . 125
. 120 . 125 . 129
. 120 . 125 . 129
. 120 . 125 . 129 . 131
. 120 . 125 . 129
. 120 . 125 . 129 . 131 . 135
. 120 . 125 . 129 . 131
. 120 . 125 . 129 . 131 . 135 . 140
. 120 . 125 . 129 . 131 . 135 . 140 . 140
. 120 . 125 . 129 . 131 . 135 . 140
. 120 . 125 . 129 . 131 . 135 . 140 . 140 . 143
. 120 . 125 . 129 . 131 . 135 . 140 . 140 . 143 . 147
. 120 . 125 . 129 . 131 . 135 . 140 . 140 . 143

CHAPTER	III (contd.)	
12.	Castigliano's theorem	. 155
13.	Some approximate methods for solution of	
	problems in the theory of elasticity,	
	based on the principle of virtual dis-	
	placements	. 160
14.	The choice of origin for displacements	
	and strains	. 167
15.	The relations between stresses and strains	_
	in isotropic elastic bodies	. 169
16.	The relation between stresses and strains	
	in anisotropic bodies; principal direc-	
	tions of anisotropy	. 174
17.	The thermodynamics of reversible deformation	. 178
18.	Classification of the problems of the	
	theory of elasticity	. 181
CHAPTER	IV. CURVILINEAR CO-ORDINATES	
l.		
T •	An introduction to the theory of ortho- gonal curvilinear co-ordinates	. 186
2.	Formulae for the strain components in an	. 100
۷.	arbitrary orthogonal co-ordinate system .	. 193
3.	The equilibrium equations for an element	• 175
	of volume in orthogonal curvilinear co-	
	ordinates	. 198
4.	Strain energy (and related principles) in	• 190
4 •	orthogonal curvilinear co-ordinates	. 204
		• 204
CHAPTER	V. THE GENERAL FORMULAE OF THE CLASSICAL	
	(LINEAR) THEORY OF ELASTICITY	
1.	Linearization of the expressions for strains	. 212
2.	Determination of the rotation vector w for	
	given strains	. 212
3.	Determination of the displacement vector	
	for given strain components	. 214
4.	The uniqueness of the determination of dis-	
	placements and angles of rotation	. 216
5.	Equilibrium conditions within a body and	
,	on its surface	. 220
6.	Hooke's law	. 222
7.	The differential equations of the linear	
	theory of elasticity (in terms of dis-	
8.	placements)	. 224
0.	The general solution of homogeneous equa-	
	tions in the theory of elasticity in the	
	form suggested by Papkovich	. 228

CHAPTER	V (contd.)		
9.	Problems in the theory of elasticity in		
-	terms of stresses	•	231
10.	The effect of rise in temperature in the		
	body during deformation		233
11.	Dynamic problems in the linear theory of		
	elasticity		236
12.	The specific strain energy of an isotropic	-	
•	body obeying Hooke's law		242
13.	Clapeyron's formula	•	244
14.	Determination of the specific additional	•	
	work (of the first kind) for bodies which		
	obey Hooke's law		245
15.	The reciprocal theorem	•	246
16.	The principle of minimum total energy and	•	240
10.	Castigliano's theorem for cases when the		
	classical theory of elasticity may be		
			249
17.	applied	•	247
±(•	the principle of superposition		251
18.	The theorems of existence and uniqueness	•	251
10.			
	of a solution to a problem in the linear		055
10	theory of elasticity	•	255
19.	Hooke's law for anisotropic bodies .	•	260
20.	Elements of symmetry in the elastic pro-		
	perties of anisotropic bodies and their		~~~
	classification	•	266
21.	Transformation of the equations of the		
	classical theory of elasticity into		
~~	orthogonal curvilinear co-ordinates .	•	271
22.	The equations of the linear theory of		
	elasticity in cylindrical and spherical		
	co-ordinates	•	275
CHAPTER			
1.	The semi-inverse method of St. Venant .	•	282
2.	St. Venant's principle	•	283
3.	St. Venant's problem	•	284
4.	Tension in a rod due to a longitudinal		
	force	•	287
5.	Bending in a rod due to a moment	•	288
6.	Torsion of rods (general theory)	•	291
7.	Other methods of solving torsion problems	٠	299
8.	Resultant tangential stresses (in the		
	problem of torsion) and some of their		
	properties	•	303

	VI (contd.)	
9.	The theorem of circulation of tangential	
	stress (in the problem of torsion)	. 306
10.	The torsion of a rod the cross-section	207
11.	of which is a circle or a circular ring . Torsion of a rod with elliptical cross-	. 307
11.	section	. 309
12.	Stress concentration in a rod in torsion	• ,09
+C •	due to a small circular groove	. 311
13.	Torsion of a rod the cross-section of which	•)
-,,	is an equilateral triangle	. 313
14.	Torsion of a rod of rectangular section .	. 316
15.	Torsion of a rod the cross-section of which	
	is in the form of a half ring	. 320
16.	Prandtl's analogy	• 324
17.	Torsion of simply connected thin-walled	
	sections made up of rectangular strips .	. 328
18.	Torsion of thin-walled rods of doubly-	
	connected cross-section (torsion of	
10	tubes)	• 331
19.	Bending in a rod by a transverse force	775
20.	applied at its end	• 335
20.	The shear centre of a rod the cross-section	• 341
21.	of which is in the form of a half-ring .	. 346
22.	Bending of a rod of elliptical cross-section	. 348
•		•)40
CHAPTER	· · · · · · · · · · · · · · · · · · ·	
	ELASTICITY	
1.	Plane deformation	• 354
2.	Airy's function	• 358
3.	The state of plane stress	• 359
4. 5.	The state of generalized plane stress . Airy's function expressed in terms of	. 361
۶.	harmonic functions	. 367
6,	Boundary conditions expressed in terms of	•)01
- •	Airy's function for given external forces	
	on the surface of the body	. 371
7.	Displacements expressed in terms of	• >1-
	Airy's function	• 374
8.	The plane problem in curvilinear co-ordinates	
.9.	The plane problem in complex form	. 381
10.	An investigation of the form of the func-	
11.	tions $\varphi(z)$ and $\psi(z)$.	• 384
44 e	The complex form of the boundary conditions	
	for the plane problem	. 387

.

.

CHAPTER	VII (contd.)		
12.	Transformation of the boundary conditions		
	to curvilinear co-ordinates		390
13.	Conformal transformation of regions into		
	a circle of unit radius	•	397
14.	Solution of the plane problem for a circular		
• -	cylinder (or for a circular plate)	•	399
15.	Stress concentration in a flat plate with		
	a circular hole	•	403
16.	The method of power series (indeterminate		
	coefficients) as a general method of		400
17	solving a plane problem	•	408
17.	The modified method of indeterminate coefficients		417
18.	Stress concentration in the neighbourhood	•	413
TO °	of an elliptical hole		417
19.	Stress concentration in the neighbourhood	•	4-1
17.	of a square hole		420
20.	The plane problem for a half-plane	•	426
21.	Forces distributed along a line, concen-	•	420
	trated forces and the functions which		
	represent them		436
22.	A concentrated force acting on a half-	•	720
	plane (Flamant's problem)		442
		-	• •-
REFEREN	CES	•	446

Publisher's notice to readers on the supply of an English translation of any Russian article mentioned bibliographically or referred to in this publication.

The Pergamon Institute has made arrangements with the Institute of Scientific Information of the U.S.S.R. Academy of Sciences whereby they can obtain rapidly a copy of any article originally published in the open literature of the U.S.S.R.

We are therefore in a position to supply readers with a translation (into English or any other language that may be needed) of any article referred to in this publication, at a reasonable price under the cost-sharing plan.

Readers wishing to avail themselves of this service should address their request to the Administrative Secretary, The Pergamon Institute at either 122 East 55th Street, New York 22, N.Y. or Headington Hill Hall, Oxford.