A.	Introduction	3
	F. K. Moore, Cornell Aeronautical Laboratory, Inc., Buffalo, New York	
	1. Scope of Laminar Flow Theory	3
	2. The Thin Boundary Layer Assumptions	5
	3. The Approach to Separation	7
	4. Approximate Methods of Boundary Layer Calculation	10
	5. Separated Flows	15
	6. Cited References	18
B.	Laminar Flow Theory	20
	P. A. Lagerstrom, Guggenheim Aeronautical Laboratory, Cali- fornia Institute of Technology, Pasadena, California	
	Chapter 1. The Navier-Stokes Equations for a Viscous Heat-Conducting Compressible Fluid	
	1. Introduction	20
	2. General Conservation Laws of Continuum Mechanics	26
	3. The Navier-Stokes Equations	34
	4. Forces on a Solid	46
	5. The Navier-Stokes Equations in General Coordinates	55
	Chapter 2. Review of Viscous Incompressible Fluids	
	GENERAL PROPERTIES OF VISCOUS WAVES. EXACT SOLUTIONS	
	6. The Navier-Stokes Equations for Incompressible Fluids	63
	7. Qualitative Discussion of Viscous Waves. Simple Examples	67
	8. Further Exact Solutions	78
	FLOW AT LOW REYNOLDS NUMBERS, LINEARIZING APPROXIMATION	
-	9. Nondimensional Form of the Navier-Stokes Equations	83
2	10. The Stokes Equations	84
	11. The Oseen Equations	88
	12. Other Linearizations. Burgers' Equations	103
	FLOW AT HIGH REYNOLDS NUMBERS.	
	BOUNDARY LAYERS, JETS, AND WAKES	
	13. Basic Notions and Equations of Boundary Layer Theory	104

14.	Methods of Solution of the Boundary Layer Equations	116
15.	Wakes. Jets. Viscous Layers on Slender Bodies	134
16.	Experimental Observations of Viscous Flow past Solid Bodies	139
17.	Asymptotic Expansions of the Solutions of the Navier-Stokes	
	Equations	150
	* .	
	Chapter 3. Introductory Discussion of the Navier- Stokes Equations for a Compressible Fluid	
18	Nondimensional Form of the Newier-Stokes Equations. In	
10.	nortant Persmeters	169
10	Event Solutions	171
20	Limiting Cases for Extreme Values of Parameters	107
21	Linearized Equations A Quasi-Linear One Dimensional	107
41.	Equation	901
	าวรุ่นสมอก	201
I	Chapter 4. Laminar Boundary Layers in Compressible Fluids	
22.	Introduction	208
23.	Change of Variables in the Differential Equations	214
24.	Integral Relations for Two-Dimensional Boundary Lavers	222
	THE FLAT PLATE WITH ZERO PRESSURE GRADIENT	
25.	Introductory Remarks	225
26.	Boundary Condition $h_{w} = \text{const. Similarity Solutions}$	227
27.	Prandtl Number Equal to Unity. Energy Integrals	230
28.	Solutions with Viscosity Coefficient Proportional to Tempera-	200
	ture	233
	BOUNDARY LAYERS WITH PRESSURE GRADIENTS	
29.	Introduction	242
30.	Compressible Boundary Layers at $M = 0$	244
31.	Correlation between Boundary Layers at $M > 0$ and $M = 0$	
•	for $Pr = 1$, $\mu \sim T$	257
32.	The Kármán-Pohlhausen Method and Related Methods	259
33	Summarizing Discussion of Compressibility Effects in Two-	200
.	Dimensional Stationary Boundary Lavers	271
34	Bodies of Revolution	411 978
95. 95	Dignlacement Effects	41U 970
26	Citad Raferences	419 999
00.	ANGA TACTATATADA	202

(x)

. 1

C. Three-Dimensional Laminar Boundary Layers

286

395

A. Mager, Spacecraft Sciences, Aerospace Corporation, Los Angeles, California

Chapter 1. General Considerations

1.	Introduction	286
2.	Boundary Layer Equations	288
3.	Choice of Coordinates	291
4.	Two-Component Vector Potential	296
5.	Integral Equations	298
6.	Correlated Flows	300
7.	Similarity Requirements	307

Chapter 2. Illustrative Solutions

8.	Surfaces of Revolution. The Divergence Effect	312
9.	Effects of Rotation. The Secondary Flow, Rotating Disk, and	
	Related Problems	316
10.	Solutions of Separable Equations. Yawed Infinite Cylinders	332
11.	Solutions by Parametric Expansion	343
12.	Restricted Solutions	361
13.	Momentum-Integral Methods	365

Chapter 3. Special Problems

14. Sudden Lateral Perturbation	368
15. Flow with Heat Transfer to a Very Cold Surface	372
16. Boundary Regions	375
17. Boundary Region with Cross Flow	385
18. Separation	387
19. Cited References	390

D. Theory of Time-Dependent Laminar Flows

Nicholas Rott, Graduate School of Aeronautical Engineering, Cornell University, Ithaca, New York

Chapter 1. Time-Dependent Solutions of the Navier-Stokes Equations

1.	Introduction	395
2.	Solutions of Stokes and Rayleigh and Their Generalizations	396
3.	The Fundamental Solutions in a Plane	397

4 .	Channel Flow in a Plane	401
5.	Nonplanar Problems	404
6.	Vortex-Type Solutions	406
7.	Stagnation Point Flow	408

į

Chapter 2. The Time-Dependent Laminar Boundary Layer

8.	The Fundamental Equations of the Time-Dependent Laminar	
	Boundary Layer	412
9.	Linearized Periodic Solutions of the Boundary Layer Problem	414
10.	Nonlinear Effects in Periodic Problems (Acoustic Streaming)	418
11.	Boundary Layer Development Starting Impulsively from Rest	421
12.	Boundary Layer Development behind a Shock Progressing	
	along a Flat Plate	425
13.	On the Separation Problem in Unsteady Flow	431
14.	Heat Transfer and Compressibility Effects	432
15.	Cited References	435
E. Hy	ypersonic Boundary Layer Theory	439
	F. K. Moore, Cornell Aeronautical Laboratory, Inc. Buffalo	
	New York	
1.	Introduction	439
2.	Equations of Motion for a Multicomponent Gas	443
3.	Various Properties of a Binary Gas Mixture	446
4.	The Boundary Layer Equations	456
5.	Couette Flow of a Dissociated Gas	458
6.	Rayleigh Flow	469
7.	Weak Nonequilibrium Waves	478
8.	Local Similarity in Steady Flow	483
9.	Steady Flow over a Semi-Infinite Flat Plate	490
10.	Steady Flow at a Stagnation Point	508
11.	Concluding Remarks	523
12.	Cited References	524
F. La	minar Flows with Body Forces	528
	Simon Ostrach, Case Institute of Technology, Cleveland, Ohio	
	Chapter 1. General Considerations	

1.	. Introduction	528
2.	. Fundamental Equations and Parameters	530

Chapter 2. Free Convection. The External Problem

	ISOTHERMAL SURFACES	
3.	Vertical Flat Plate	535
4.	Inclined Plate	552
5.	Vertical Cylinder	552
6.	Horizontal Cylinder	558
7.	Effect of Variable Fluid Properties	573
8.	"Similar" Flows about Two-Dimensional and Axially Symmet-	-
	ric Bodies	576
	NONISOTHERMAL SUBFACES	
9.	Vertical Flat Plate	587
10.	Vertical Cylinder	603
	COMBINED FREE AND FORCED FLOWS	
11.	Basic Equations	607
12.	Horizontal Cylinder	611
13.	Vertical Cylinder and Plate	613
	Chapter 3. Thermal Instability	
14,	Introduction	616
15.	Cellular Flows	619
16.	Columnar Flows	624
17.	Unstable Layers with Superposed Steady Flow	626
	Chapter 4. Natural Convection. The Internal Problem	
10	Totroduction	007

18.	Introduction	627
19.	Fully Developed Flow in Vertical Channels	628
20.	Fully Developed Flow in Vertical Tubes	642
21.	Closed-End Tubes	642
22,	Flows in a Rotating Container	647
23.	Completely Enclosed Flows	659
24.	Natural Convection at the Critical State	660

· ·

Chapter 5. Unsteady Flows with Body Forces

25.	Free Convection	663	3
26.	Natural Convection	669	9
27.	Effect of Body Forces on Unsteady Forced Flows	674	4

(xiii)

.

Chapter 6. Hydrodynamic Stability

28.	Introduction	678
29.	Disturbance Differential Equations	679
30.	Free Convection Stability	680
31.	Natural Convection Stability	684
	Chapter 7. Magnetohydrodynamics	

32,	Introduction	691
33.	Fundamental Equations	692
34.	Basic Parameters	693
35.	Boundary Conditions	699
36.	External Problems	700
37.	Internal Problems	707
38.	Cited References	712

G. Stability of Laminar Flows

S. F. Shen, Department of Aeronautical Engineering, University of Maryland, College Park, Maryland

Chapter 1. Introduction

1.	The Stability Problem	719
2.	Formulation of the Stability Problem	720
3.	Disturbance Equations in Cartesian Coordinates. Two-	
	Dimensional and Three-Dimensional Disturbances for Parallel	
	Flows over a Flat Surface	722
4.	Stability of Parallel Flows with Respect to Longitudinal Vor-	
	tex Disturbances and Transverse Wave Disturbances	724
5.	The Energy Balance Relation in the Two-Dimensional Prob-	
	lem. Sufficient Condition for Stability	727
	Chapter 2. The Stability Theory Dealing with Transverse Wave Disturbances of Parallel Flows	
6.	Differential Equations and the Eigenvalue Problem	730
P7	$\mathbf{C}_{1} = \mathbf{I} \mathbf{D}_{1} \mathbf{D}_{1} \mathbf{D}_{2} \mathbf{D}_{1} \mathbf{D}_{2} \mathbf{D}_{1} \mathbf{D}_{2} \mathbf{D}_{1} \mathbf{D}_{2} \mathbf{D}_{2} \mathbf{D}_{1} \mathbf{D}_{2} D$	
- 1.	General Results from "Inviscid" Considerations	732
7. 8.	Fundamental Solutions of the Orr-Sommerfeld Equation	732 736
7. 8. 9.	Fundamental Solutions of the Orr-Sommerfeld Equation Improved Solutions of Tollmien for Real c	732 736 741
7. 8. 9. 10.	Fundamental Solutions of the Orr-Sommerfeld Equation Improved Solutions of Tollmien for Real c Secular Equation for the Determination of the Neutral	732 736 741
7. 8. 9. 10.	General Results from "Inviscia" Considerations Fundamental Solutions of the Orr-Sommerfeld Equation Improved Solutions of Tollmien for Real c Secular Equation for the Determination of the Neutral Curve	732 736 741 743
7. 8. 9. 10.	General Results from "Inviscia" Considerations Fundamental Solutions of the Orr-Sommerfeld Equation Improved Solutions of Tollmien for Real c Secular Equation for the Determination of the Neutral Curve Numerical Calculation of the Neutral Curve. The Plane	732 736 741 743
7. 8. 9. 10. 11.	General Results from "Inviscia" Considerations Fundamental Solutions of the Orr-Sommerfeld Equation Improved Solutions of Tollmien for Real c Secular Equation for the Determination of the Neutral Curve Numerical Calculation of the Neutral Curve. The Plane Poiseuille and Blasius Flows	732 736 741 743 743
 8. 9. 10. 11. 12. 	General Results from "Inviscia" Considerations Fundamental Solutions of the Orr-Sommerfeld Equation Improved Solutions of Tollmien for Real c Secular Equation for the Determination of the Neutral Curve Numerical Calculation of the Neutral Curve. The Plane Poiseuille and Blasius Flows Numerical Results for the Plane Poiseuille and Blasius Flows	732 736 741 743 743 746 751
7. 8. 9. 10. 11. 12. 13.	General Results from "Inviscia" Considerations Fundamental Solutions of the Orr-Sommerfeld Equation Improved Solutions of Tollmien for Real c Secular Equation for the Determination of the Neutral Curve Numerical Calculation of the Neutral Curve. The Plane Poiseuille and Blasius Flows Numerical Results for the Plane Poiseuille and Blasius Flows Calculation of the Eigenvalues for the Higher Modes. The	732 736 741 743 746 751
7. 8. 9. 10. 11. 12. 13.	General Results from "Inviscia" Considerations Fundamental Solutions of the Orr-Sommerfeld Equation Improved Solutions of Tollmien for Real c Secular Equation for the Determination of the Neutral Curve Numerical Calculation of the Neutral Curve. The Plane Poiseuille and Blasius Flows Numerical Results for the Plane Poiseuille and Blasius Flows Calculation of the Eigenvalues for the Higher Modes. The Couette and Poiseuille Flows	732 736 741 743 746 751 758

,

Chapter 3. Extensions and Applications of the Stability Theory of Transverse Wave Disturbances

14.	Equations and Solutions for Stability of a Compressible	
	Fluid	761
15.	Some Difficulties of the Stability Theory of Compressible	200
16	Fluids	768
10,	Leven over a Elet Dista Carling Paguined for Complete	
	Stabilization	775
17	Boundary Lavers with Pressure Gradient Suction or Blowing	782
18	Flows along a Curved Wall and with Axial Symmetry Poi-	102
10.	seuille Flow in a Circular Pipe	787
19.	Flow in Wakes, Jets. and the Mixing Region	790
20.	Three-Dimensional Boundary Layers, Flow over a Rotating	
	Disk	800
21.	Flows under the Influence of Additional Physical Mechanisms	803
	Chapter 4. Stability Theory Dealing with Longitudinal	
	Vortex-Type Disturbances	
22.	The Eigenvalue Problem and the Rayleigh Criterion for	
	Stability	813
23.	Couette Flow between Rotating Cylinders	815
24,	The Influence of Magnetic Field on Flow between Rotating	
0 F	Cylinders	821
25.	Boundary Layer Flow near a Concave Wall	825
20.	Flow near a Stagnation Point	830
	Chapter 5. Behavior Subsequent to the Onset of	
	Infinitesimal Disturbances	
27.	General Remarks	832
28.	Approximate Formulation of the Stability Problem with	
	Finite Disturbance	834
29.	The Energy Method with Finite Disturbances	839
30.	Secondary Instability of Boundary Layer Flows	843
31.	Cited References	847
Index		855

(xv)

۰.