													PAGE
GREEK ALPHABET	-	-	-	-	-	-	-	-	•	-	-	-	xxii
HISTORICAL NOTES	-	-	-	•	-	•	-	•	-	-	-	-	xxiii
PLATES 1-4	-	-	-	-	-	-	•	-	-	-	-	-	xxv

CHAPTER I

BERNOULLI'S EQUATION

1.0.	Introductory notions	-	-	-	-	•	-	-	-	•	1
1.01.	Physical dimensions	-	-	-	-	· -	-	-	-	-	2
1.1.	Velocity	-	-	-	-	-	-	-	-	-	4
1.11.	Streamlines and paths of the	particle	3	•	-	-	-	-	-	-	5
1.12.	Stream tubes and filaments	-	-	-	•	-	•	-	-	-	6
1.13.	Fluid body	-	-	-	-	-	-	-	-	-	7
1.2.	Density	-	-	-	-	-	-	-	-	-	7
1.3.	Pressure	-	-	-	-	-	-	-	-	-	8
1.4.	Bernoulli's theorem	-	-	-	-	-	-	-	-	-	9
1.41.	Flow in a channel	-	-	-	-	-	- 1	· •	-	-	11
1.43.	The constant in Bernoulli's th	eorem i	for a	liquid		-	-	-	-	-	11
1.44.	Hydrodynamic pressure -	-	-	-	-	-	-	-	-	-	12
1•5.	The Pitot tube	-	-	-	-	-	-	-	-	-	13
1.6.	The work done by a gas in ex	panding	g -	-	-	-	-	-	-	-	14
1.61.	Bernoulli's theorem for barotr	ropic flo	w	-	-	-	-	-	-	-	15
1.62.	Application of Bernoulli's the	orem to	adia	batic	expa	nsion	-	-	-	-	15
1.63.	Subsonic and supersonic flow	-	-	-	-	-	-	-	-	-	17
1.64.	Flow of gas in a converging p	ipe	-	-	-	-	-	-	-	•	18
1.7.	The Venturi tube	-	-	-	-	-	-	-	-	-	18
1.71.	Flow of a gas measured by th	e Vent	ari tu	be	-	-	-	-	-	•	19
1.8.	Flow through an aperture -	-	-	-	-	-	-	-	•		20
1·81.	Torricelli's theorem	-	-	-	-	-	-	-	-	-	20
1.82.	The coefficient of contraction	-	-	-	-	-	-	-	-	-	21
1.9.	Euler's momentum theorem	-	-	-	. •	-	-	-	-	-	22
1·91.	The force on the walls of a fir	ne tube	-	-	-	-	-		-	-	23
1.92.	d'Alembert's paradox -	-	-	-	-	-	-	-	-	-	23
1·93.	The flow past an obstacle -	-	-	-	-	-	-	-	-	-	24
	Examples I	-	-	-	-	-	-	•	-	-	26

CHAPTER II

VECTORS AND TENSORS

2·1.	Scalars and vectors	-	-	•	-	•	-	-	•	29
2·11.	The scalar product of two vectors	-	-	-	-	-	-	-	•	30
2 ·12.	The vector product of two vectors	-	-	-	-	-	-	-	-	30
2·121.	The distributive law	-	-	-	-	-	-	-	•	31

											PAGE
2·13.	Triple scalar product	-	-	-	-	-	-	-	-	-	31
2·14.	Triple vector product	-	-	-	-	•	-	-	-	-	32
2.15.	Resolution of a vector -	•	-	-	-	-	•	-	-	-	33
2.16.	Tensors	-	-	-	-	-	-	-	-	-	34
2·1 9.	Scalar and vector fields -	-	-	-	-	-	-	-	-	-	37
2.20.	Line, surface, and volume inte	grals	-	-	-	-	-	-	-	-	37
2.22.	Variation of a scalar function	of posi	tion	-	-	-	-	-	-	-	4 0
2 ·23.	The operator $(\mathbf{a} \nabla)$	-	-	-	-	-	-	-	-	-	41
2·24.	Generalised definition of the op	perator	: V	-	-	-	-	-	-	-	42
2·32.	Operations on a single vector of	or scala	ar	-	-	-	-	-	-	-	44
2·33.	Operations on a product -	-	-	-	-	-	-	-	-	-	44
2.34.	Applications of ∇ to products	•	-	-	-	-	-	-	-	-	46
2.40.	Analysis of the motion of a flu	id elen	nent	-	-	-	-	-	-	-	47
2 ·41.	Vorticity	-	-	-	-	-	-	-	-	-	48
$2 \cdot 42.$	Circulation	-	-	-	-	-	-	-	-	-	49
2.50.	Stokes' theorem	-	-	-	-	-	-	-	-	-	50
2 ·51.	Deductions from Stokes' theor	$\mathbf{e}\mathbf{m}$	-	-	•	-	-	-	-	-	52
2 ·52.	Irrotational motion	-	-	-	-	-	-	-	-	-	52
2·53.	Conservative field of force -	-	-	-	-	-	-	-	-	-	53
2.60.	Gauss's theorem	•	-	-	-	-	-	-	-	-	54
2 ·61.	Deductions from Gauss's theor	em	-	-	-	-	-	-	-	-	55
2 ·615.	A solenoidal vector forms tube	es of co	onstar	nt inte	nsity	-	-	-	-	-	56
2 ·62.	Green's theorem	-	-	-	-	-	-	-	-	-	56
2 ·63.	An application of Green's theo	rem	-	-	-	-	-	-	•	-	58
2 ·70.	Cartesian coordinates	· _	-	-	-	-	-	-	-	-	59
2 ·71.	The alternative notation $\partial/\partial \mathbf{r}$	-	-	-	-	-	-	-	-	-	61
2.72.	Orthogonal curvilinear coordin	ates	-	-	-	-	-	-	-	-	62
2.73.	Rate of change of the unit vec	tors	-	-	-	-	-	-	-	-	65
	Examples II	-	-	-	•	-	-	-	-	-	67

CHAPTER III

EQUATIONS OF MOTION

3 ·10.	Differentiation with respect to the tin	ae	-	-	-	•	-	-	-	70
3 ·20.	The equation of continuity -	•	-	-	-	-	-	-	-	72
3 ∙30.	Boundary conditions (Kinematical)	-	-	-	•	-	•	-	-	74
3·31.	Boundary conditions (Physical) -	-	-	-	-	-	-	-	-	75
3 ∙32.	Efflux	-	-	-	-	-	-	-	-	76
3 ·40.	Rate of change of linear momentum	-	-	-	-	-	-	-	-	77
3 ∙41.	The equation of motion of an inviscid	fluid	-	-	-	-	-	-	-	78
3 ·42.	Euler's momentum theorem -	-	•	-	-	-	-	-	-	79
3·43.	Conservative forces	-	-	-	-	-	-	-	-	79
3 ∙44.	Lagrangian form of the equation of m	otion	-	-	-	-	-	-	-	81
3 ∙ 4 5.	Steady motion	-	-	-	-	•	:	-	-	82
3 ·50.	The energy equation	-	-	-	-	-	-	-	-	82
3 ·51.	Rate of change of circulation -	-	-	-	-	-	-	-	-	83
3 ·52.	Vortex motion	-	-	•	-	-	-	-	-	84
3 ∙53.	Permanence of vorticity	-		-	-	-	-	-	-	85
	•									

x

													PAGE
3 ∙54.	Permanence of vorte	x lines	3	-	-	-	- '	-	-	-	-	-	86
3 ∙55.	Relative motion -	-	-	-	-	-	-	-	-	-	-	-	87
3 ∙60.	Irrotational motion.	Press	sure e	quat	ion	-	-	-	•	-	-	-	88
3 ·61.	The pressure equation	ı refer	red t	o mo	ving a	axes	-	-	-	-	-	-	89
3 ·62.	The thrust on an obs	tacle	-	-	-	-	-	-	-	-	-	-	90
3 ·64.	Impulsive motion	-	-	•	-	-	-	-	-	-	•	-	91
3 ·70.	Connectivity .	-	-	-	-	-	-	-	-	-	-	-	9 2
3 ·71.	Acyclic and cyclic irr	otatio	nal n	notior	1 -	-	-	-	-	-	-	•	9 3
3 ·72.	Kinetic energy of liqu	ıid	-	-	-	-	-	-	-	•	-	-	94
3 ∙73.	Kelvin's minimum er	ergy 1	theor	\mathbf{em}	-	-	-	-	-	-	-	-	95
3 ·74.	Mean value of the ve	locity	pote	ntial	-	-	-	-	-	-	-	-	9 6
3 ·75.	Mean value of the ve	locity	pote	ntial	in a p	eriph	ractic	regio	on	-	-	•	97
3 ·76.	Kinetic energy of inf	nite li	iquid	-	-	-	-	•	-	-	-	•	98
3 ·77.	Uniqueness theorems	- ·	•	-	-	-	-	-	-	-	-	-	99
	Examples III .	-	-	-	-	-	-	-	-	-	-	-	101

CHAPTER IV

TWO-DIMENSIONAL MOTION

4·1.	Motion in two dimensions	- '	-	-	-	•	•	-	106
4 ·20.	Intrinsic expression for the vorticity -	-	-	-	-	-	-	•	107
4.23.	The rate of change of the vorticity -	-	-	-	-	-	-	-	108
4 ·25.	Intrinsic equations of steady motion •	-	-	-	-	-	-	-	109
4·30.	Stream function	-	-	-	-	-	-	-	110
4·31.	Velocity derived from the stream function	-	-	-	-	-	-	•	111
4 ·32.	Rankine's method	-	-	-	-	-	-	-	112
4 ∙33.	The stream function of a uniform stream	-	-	-	-	-	-	-	112
4 ·40.	Vector expressions for velocity and vorticit	y	-	-	-	-	-	-	113
4 ·41.	Equation satisfied by ψ	-	-	-	-	-	-	-	114
4 ·5.	The pressure equation	-	-	-	-	-	-	-	115
4 ·6.	Stagnation points	•	•	•	- `	-	-	-	116
4 ·70.	The velocity potential of a liquid -	•	•	-	-	-	-	-	117
4.71.	The equation satisfied by the velocity pote	ntial	-	-	-	•	-	-	118
	Examples IV	•	•	-	-	-	-	-	119

CHAPTER V

COMPLEX VARIABLE

5 ·01.	Complex numbers	-	-	-	-	-	-	-	-	121
5 ·10.	Argand diagram	-		-	-	-	-	-	-	121
5.11.	Multiplication	-	-	-		-	-	-		122
5 ·12.	Equality of complex numbers -	-	-	· .	•	-	-	•	-	123
5·13.	Euler's theorem	-	-	-	-	-	-	-	-	124
5·14.	Conjugate complex numbers .	-	-	-	-	-	-	-	-	125
5 ·15.	The reciprocal of a complex number	· -	· -	-	-	-	-	-	-	125
5 16.	Vector properties of complex number	ers	-	-	-	-	-	-	-	126
5.17.	Rotation of axes of reference	-	-	-	-	-	-	-	-	127
5 ∙20.	Logarithms	-	-	-	-	-	-	-	-	127

											PAGE
5·21.	Real and imaginary parts -	-	-	-	•	-	-	-	-	-	127
5·30.	Definition of a holomorphic func-	tion c	of z	-	-	-	-	-	-	-	128
5 ·31.	Conjugate functions	-	-	-	-	-	-	-	-	-	130
5·32.	On the relation of conjugate fund	etions	to $f($	z)	-	-	-	-	-	-	131
5·33.	The solution of Laplace's equation	n	-	-	-	-	-	-	-	•	132
5·4 0.	Sense of description of a contour		-	-	-	-	-	-	-	•	133
5 ·43.	The area theorem	-	-	-	-	-	-	-	-	-	133
5 ·50.	Cauchy's integral theorem -	-	-	. ·	-	-	-	-	-	-	134
5 ·51.	Morera's theorem	-	-	-	-	-	-	-	-	•	134
5 ·52.	Analytical continuation -	-	-	-	-	-	-	-	-	-	135
5·53.	The principle of reflection -	-	-	-	-	-	-	-	-	-	135
5·54 .	Contraction or enlargement of a	conto	ur	-	-	-	-	-	-	-	136
5 ·55.	Case where the function ceases to	be ł	olom	orphi	c	-	-	-	-	-	136
5.56.	Singularities	-	-	•	-	-	-	-	-	-	137
5.57.	Residues	-	-	-	-	-	-	-	-	-	137
5 ·58.	Cauchy's residue theorem -	-	-	-	-	-	-	-	-	-	138
5.59.	Cauchy's formula	-	-	-	-	-	-	-	-	-	139
5 ·591.	Cauchy's formula for the exterior	dom	ain	-	-	-	-	-	-	-	139
5 ∙595.	Principal value of an integral	-	-	-	-	-	-	-	-	-	140
5 ·596.	The formulae of Plemelj -	-	-	-		-	•	-	-	•	141
5·60.	Zeros	-	-	-	-	-	-	-	-	-	142
5 ·61.	The principle of the argument	-	-	-	-	-	-	-	-		143
5 ·62.	Mapping	•	-	-	-	-	•	-	-		143
5 ∙63.	Indented contours	•	-	-	-	-	-	-	-		145
5 ·70.	Conformal representation -	-	-	-	-	-	-	-	-	-	146
5 ·71.	The mapping of infinite regions	-	-	-	-	-	-	-	-		148
	Examples V	-	-	-	-	-		-	-		149
											,

CHAPTER VI

STREAMING MOTIONS

Complex potential	-	-	-	-	-	-	-	152
The complex velocity	-	-	-	-	-	-	-	153
Stagnation points	-	-	-	-	-	-	-	154
The speed	-	-	-	-	-	-	-	154
Inviscid flow past a wedge	-	-	-	-	-	-	-	155
The equations of the streamlines -		-	-	-	-	-	-	155
Flow through an aperture	-	-	-	-	-	-	-	156
Circulation about an elliptic cylinder -	-	-	-	-	-	-	-	157
The circle theorem	-	-	-	-	-	-	-	157
Streaming motion past a circular cylinder		-	-	-	-	-	-	158
The dividing streamline	-	-	-	-	-	-	-	159
The pressure distribution on the cylinder	-	-	•		-			160
Cavitation	-	-	-	-		-		161
Rigid boundaries and the circle theorem	-	-	-	-	-	-		162
Application of conformal representation	-	-	-	-		-		163
The Joukowski transformation	-	-	-	-	-		-	164
The flow past an elliptic cylinder	· _	-	-	-	-	-		167
	Complex potential - - The complex velocity - - Stagnation points - - The speed - - Inviscid flow past a wedge - - Inviscid flow past a wedge - - The equations of the streamlines - - Flow through an aperture - - Circulation about an elliptic cylinder - - The circle theorem - - Streaming motion past a circular cylinder - - The pressure distribution on the cylinder - - Cavitation - - - Rigid boundaries and the circle theorem - - Application of conformal representation - - The flow past an elliptic cylinder - -	Complex potential.The complex velocity.Stagnation points.The speed.Inviscid flow past a wedge.The equations of the streamlines.Flow through an aperture.Circulation about an elliptic cylinder.The circle theorem.Streaming motion past a circular cylinder.The pressure distribution on the cylinder.Cavitation.Rigid boundaries and the circle theorem.Application of conformal representation.The flow past an elliptic cylinder.	Complex potential.The complex velocity.Stagnation points.The speed.Inviscid flow past a wedge.The equations of the streamlines.Flow through an aperture.Circulation about an elliptic cylinder.The circle theorem.Streaming motion past a circular cylinder.The pressure distribution on the cylinder.Cavitation.Rigid boundaries and the circle theorem.Application of conformal representation.The flow past an elliptic cylinder.The Joukowski transformation.	Complex potential.The complex velocity.Stagnation points.The speed.Inviscid flow past a wedge.The equations of the streamlines.Flow through an aperture.Circulation about an elliptic cylinder.The circle theorem.Streaming motion past a circular cylinder.The pressure distribution on the cylinder.Cavitation.Rigid boundaries and the circle theorem.Application of conformal representation.The flow past an elliptic cylinder.	Complex potential.The complex velocity.Stagnation points.The speed.Inviscid flow past a wedge.The equations of the streamlines.Flow through an aperture.Circulation about an elliptic cylinder.The circle theorem.Streaming motion past a circular cylinder.The pressure distribution on the cylinder.Cavitation.Rigid boundaries and the circle theorem.Application of conformal representation.The flow past an elliptic cylinder.	Complex potential . . . The complex velocity . . . Stagnation points . . . The speed Inviscid flow past a wedge The speed Inviscid flow past a wedge The equations of the streamlines Flow through an aperture Circulation about an elliptic cylinder The circle theorem Streaming motion past a circular cylinder .	Complex potential	Complex potential

xii

													PAGE
6 ∙32.	Elliptic coordinates	-	-	-	-	-	-	-	-	•	-	-	167
6 ∙33.	Application of elliptic	coo	rdina	tes to	the s	strear	ning j	past a	n elli	\mathbf{pse}	-	-	169
6 ·34.	Flow past a plate	-	-	-	-	-	-	-	-	•	-	-	171
6 ∙35.	A general method	-	-	-	-	-	-	-	-	-	-	-	172
6·41.	Theorem of Blasius	-	-	-	-	-	-	-	•	-	-	-	173
6·42.	The action of a unifo	rm s	tream	on a	n elli	ptic c	ylind	\mathbf{er}	•	-	-	-	175
6 ∙50.	Coaxal coordinates	-	-	-	-	-	-	-	-	-	-	-	176
6·51.	Flow over a ditch or	mou	ind .	-	-	-	-	-	-	-	-	-	177
6 ∙52.	Flow past a cylindric	al lo	g -	-	-	-	-	-	-	-	-	-	179
6·53.	Cylinder in a tunnel	-	-	-	-	-	-	-	-	-	-	-	181
	EXAMPLES VI -	-		-	•	-	-	-	-	-	-	-	182

CHAPTER VII

AEROFOILS

Circulation about a circular cylinder -	-	-	•	•	-	•	-	186
Circulation between concentric cylinders	-	-	-	-	-	•	-	187
Streaming and circulation for a circular cylin	\mathbf{nder}	-	-	-	-	-	-	187
Flow with constant vorticity	-	-	-	-	-	-	-	190
The second circle theorem	-	-	-	-	-	-	-	191
Uniform shear flow	-	-	-	-	-	-	-	192
Circular cylinder in uniform shear flow	-	-	-	-	-	-	-	192
Elliptic cylinder in uniform shear flow	-	-	-	-	-	-	-	193
The aerofoil	-	-	-	-	-	-	-	194
Further investigation of the Joukowski tran	nsforr	natio	n	-	-	-	-	195
Geometrical construction for the transformation	ntion	-	-	-	-	-	-	196
The nature of the trailing edge	-	-	-	-	-	-	-	198
Joukowski's hypothesis	-	-	-	-	-	-	-	199
The theorem of Kutta and Joukowski	-	-	-	-	-	-	-	200
The lift on an aerofoil in a uniform stream	-	-	-	-	-	-	-	201
Axes of a profile	-	-	-	-	-	-	-	203
Focus of a profile	-	-	-	-	-	-	•	203
The metacentric parabola	-	-	-	-	-	-	-	204
Examples VII	-	-	-	-	-	•	•	205
	Circulation about a circular cylinder Circulation between concentric cylinders Streaming and circulation for a circular cyli Flow with constant vorticity The second circle theorem Uniform shear flow Circular cylinder in uniform shear flow Elliptic cylinder in uniform shear flow The aerofoil Further investigation of the Joukowski tran Geometrical construction for the transformer The nature of the trailing edge Joukowski's hypothesis The theorem of Kutta and Joukowski The lift on an aerofoil in a uniform stream Axes of a profile Focus of a profile The metacentric parabola EXAMPLES VII	Circulation about a circular cylinder Circulation between concentric cylinders Streaming and circulation for a circular cylinder Flow with constant vorticity The second circle theorem Uniform shear flow Circular cylinder in uniform shear flow - Elliptic cylinder in uniform shear flow - The aerofoil Further investigation of the Joukowski transform Geometrical construction for the transformation The nature of the trailing edge Joukowski's hypothesis The theorem of Kutta and Joukowski The lift on an aerofoil in a uniform stream - Axes of a profile Focus of a profile The metacentric parabola EXAMPLES VII	Circulation about a circular cylinder					

CHAPTER VIII

SOURCES AND SINKS

8 ·10.	Two-dimensional source	-	-	-	-	-	•	-	209
8 ·12.	The complex potential for a simple source	-	-	-	-	•	-	-	210
8·20.	Combination of sources and streams -	-	-	•	-	-	-	-	210
8 ·21.	Source in a uniform stream	-	-	-	-	-	-	-	211
8.22.	Source and sink of equal strengths	-	-	-	-	-	-	-	213
8·23.	Doublet, or double source	-	-	-	-	-	•	-	213
8·24.	Green's equivalent stratum of doublets	-	-	-	-	•	-	-	214
8·30.	Source and equal sink in a stream -	-	-	-	-	-	-	-	2 15
8 ∙31.	Two equal sources	-	-	•	•	•	-	-	217
8-40.	The method of images	-	-	-	-	-	-	-	2 19
	·								

xiii

							PAGE	
Effect on a wall of a source parallel to the wall	-	-	-	-	-	-	219	
General method for images in a plane -	-	-	-	-	•	-	220	
Image of a doublet in a plane	-	-	-	-	-	-	221	
Sources in conformal transformation	-	-	-	-	-	-	221	
Source in an angle between two walls	-	-	-	-	-	-	222	
Source outside a circular cylinder	-	-	-	-	-	-	222	
The image system for a source outside a circula	ar cyli	inder	-	-	-	-	222	
The force exerted on a circular cylinder by a s	source	; -	-	-	-	-	224	
Lagally's theorem	-	-	-	-	-	-	224	
Source outside an elliptic cylinder	-	-	-	-	-	-	227	
Mapping on a unit circle	-	-	-	-	-	-	227	
Source outside a cylinder	-	-	-	-	-	-	229	
Force on the cylinder	-	-	-	-	-	-	229	
Source and sink outside a circular cylinder -	-	-	-	-	-	-	230	
The image of a doublet in a circular cylinder	•	-	-	-	-	-	230	
The force on a cylinder due to a doublet -	-	-	-	-	-	-	231	
Extension of Lagally's theorem to doublets	-	-	-	•	-	-	232	
Source in compressible flow	-	-	-	-	•	-	233	
Examples VIII	-	-	•	•	-	-	234	
	Effect on a wall of a source parallel to the wall General method for images in a plane Image of a doublet in a plane	Effect on a wall of a source parallel to the wall - General method for images in a plane	Effect on a wall of a source parallel to the wall General method for images in a plane	Effect on a wall of a source parallel to the wall	Effect on a wall of a source parallel to the wall	Effect on a wall of a source parallel to the wall	Effect on a wall of a source parallel to the wall	Effect on a wall of a source parallel to the wall 219 General method for images in a plane 220 Image of a doublet in a plane 221 Sources in conformal transformation 221 Source in an angle between two walls 222 Source outside a circular cylinder 222 The image system for a source outside a circular cylinder 222 The force exerted on a circular cylinder by a source 224 Lagally's theorem 224 Source outside an elliptic cylinder 224 Source outside an elliptic cylinder 227 Mapping on a unit circle 227 Source outside a cylinder 229 Force on the cylinder 229 Source and sink outside a circular cylinder 230 The image of a doublet in a circular cylinder 230 The force on a cylinder due to a doublet 231 Extension of Lagally's theorem to doublets

CHAPTER IX

MOVING CYLINDERS

9 ·10.	Kinetic energy of acyclic irrotational a	notio	n	•	-	-	-	-	-	24 0
9.11.	Kinetic energy of cyclic motion -	-	-	-	-	-	-	-	-	240
9·20 .	Circular cylinder moving forward	-	-	•	-	-	-	-	-	242
9·21 .	Paths of the particles	-	-	-	-	-	-	-	•	243
9·22.	Kinetic energy	-	-	-	-	-	-	-	-	246
9·221.	Virtual mass	-	-	-	-	-	-	-	•	246
9·222.	Virtual mass in two-dimensional motio	on	-	-	-	-	-	-	-	247
9·23.	Circular cylinder falling under gravity		-	-	-	-	•	-	•	250
9·24.	Circular cylinder with circulation	-	-	-	-	-	-	-	-	250
9·25.	Cylinder moving under gravity -	-	-	-	-	-	-	-	-	251
9·30.	Pressure equation referred to moving	axes	-	-	-	-	-	-	-	252
9·40.	The stream function on the boundary	-	-	-	-	-	•		•	252
9·50.	Force on a moving cylinder -	-	-	-	-	-	-	-	-	253
9·52.	Extension of the theorem of Blasius	-	-	-	-	-	-	-	-	255
9.53.	Cylinder moving in unbounded fluid	-	-	-	-	-	-	•	•	256
9 ·62.	Cylinder moving in a general manner	•	-	-	-	-	-	-	-	257
9 ∙63.	The complex potential for a moving c	ylind	er	-	-	-	-	-	-	258
9 ·64.	Circular cylinder (general method)	-	-	-	-	-	-	-	-	259
9.65.	Elliptic cylinder	-	•	-	-	-	-	-	-	260
9 ∙66.	Cylinder with circulation	•	-	-	-	-	-	-	-	262
9.70.	Rotating cylinder	•	-	-	-	•	-	-	-	263
9.71.	Rotating elliptic cylinder containing l	iquid	-	-	-	-	-	-	-	263
9.72.	Rotating equilateral prism containing	liqui	d	•	-	•	-	-	•	264
9.73.	Slotted circular cylinder	•	•	-	-	-	-	-	-	265
9·74.	Cross-section Booth's lemniscate	-	-	-	•	-	-	•	-	265

									PAGE
9.75.	Mapping method for the complex potential	-	-	-	-	-	-	-	266
9.76.	Curvilinear polygonal boundary	-	-	-	-	-	-	-	266
9·77.	Rotation about an eccentric point -	-	-	-	•	-	-	-	267
	Examples IX	-		-	-	-	-	-	268

CHAPTER X

THEOREM OF SCHWARZ AND CHRISTOFFEL

10.1.	Simple closed polygons	-	-	-	-	-	-	274
10.2.	Theorem of Schwarz and Christoffel	-	-	-	-	-	-	276
10 ·21.	Theorem of Schwarz and Christoffel for the circl	e	-	-	-	-	-	280
10.31.	Mapping a semi-infinite strip	-	-	-	-	-	- .	281
10.32.	Mapping an infinite strip	-	-	-	-	-	-	282
10.33.	Mapping a strip on a circle	-	-	-	-	-	-	282
10.4.	Flow into a channel through a narrow slit in a v	vall	-	-	-	-	- ·	283
10.5.	Source midway between two parallel planes	-	-	-	-	•	-	284
10.6.	A step in the bed of a deep stream	-	-	-	-	-	-	285
10.7.	Abrupt change in the breadth of a channel	-	-	-	-	-	-	287
10.8.	Branch in a canal	-	-	-	-	-	-	289
	Examples X	-	-	-	-	-	-	292

CHAPTER XI

JETS AND CURRENTS

11.10.	Free streamlines -	-	-	-	-	-	-	-	-	-	-	-	295
11.11.	Jets and currents	-	-	-	-	-	-	-	-	-	-	-	296
11.2.	Formula of Schwarz	-	-	-	-	-	-	-	-	-	-	-	298
11.30.	Impinging jets -	-	-	-	-	-	-	-	-	-	-	-	299
11.31.	The complex velocity	-	-	-	-	-	-	-	-	-	-	-	299
11.32.	Expression of the con	plex	poten	tial i	n terr	ns of	υ	-	-	-	-	-	300
11.33.	Relations between the	e brea	dths a	and d	irecti	ons o	f the	curre	nts	-	-	-	301
11.34.	Expression for z in te	rms o	fυ	-	-	-		-	-	-	-	-	301
11.35.	The equations of the	free st	tream	lines	-	-	-	-	-	-	-	-	302
11.40.	The indeterminatenes	s of t	he pro	oblem		-	-	-	-	-	-	-	302
11.41.	Direct impact of two	equal	jets	-	-	-	-	-	-	-	-	-	303
11.42.	Direct impact of two	jets	-	-	-	-	-	-	-	-	-	-	305
11.43.	Oblique impact of equ	1al jet	s	-	-	-	-	-	-	-	-	-	306
11.50.	Rigid boundaries	-	-		-	-	-	-		-	-	-	306
11.51.	Borda's mouthpiece in	1 two	dime	nsion	8	-	-	-	-	-	-	-	307
11.52.	The equation of the fi	ree st	reaml	ines	-	-		-	-	-	•	-	309
11.53.	Flow through an aper	ture	-	-	-			-	-	-	-	_	310
11.54.	Curved boundaries	-	-		-	-	-	-			_	_	311
	EXAMPLES XI .	-	-	-	-		-	-	-	-			312
			_										014

CHAPTER XII

HELMHOLTZ MOTIONS

								-0-11						
12.1.	Cavitation -	-	•	-	-	-	-	-	-	-	-	-	-	316
12.12.	Proper cavitatio	n	-	-	-	-		-	-	-	-	-	-	317

xv

													PAGE
12.20.	Direct impact of a stre	eam o	on a la	amina	ı	-	-	-	-	-	-	-	318
12·21.	The drag	-	-	-	-	-	-	-	-	-	-	-	320
12·22.	Drag coefficient •	-	-	-	-	-	-	-	•	•	-	•	321
12·23.	Riabouchinsky's prob	lem	-	-	-	-	-	-	-	-	-	-	322
12.25.	Gliding and planing -		-	-	-	-	-	-	-	-	-	-	324
12.26.	Gliding of a plate on t	he su	irface	ofa	strear	a	-	-	-	-	-	•	325
12·30.	Reflection across free $% \left({{{\mathbf{F}}_{{\mathbf{F}}}} \right)$	strea	mlines	3	-	-	-	-	-	-	-	•	328
12·31.	Borda's mouthpiece	-	-	-	-	-	-	-	-	-	-	-	331
12.32.	Flow from an orifice	-	-	-	-	•	-	-	•	-	-	-	332
12·33.	Stream impinging on	a lam	ina	-	-	•	-	-	-	-	-	-	334
12.34.	Geometrical interpret	ation	of th	e forc	e	-	-	-	-	-	-	-	335
12·35.	Backward jet -	-	-	-	-	-	•	•	-	-	-	-	336
12.40.	Levi-Civita's method	-	-	-	-	-	-	-	-	-	-	-	338
12.41.	Mapping the z-plane	-	-	-	-	•	-	-	-	-	-	•	338
12.42.	The streamlines -	-	-	-	-	•	-	-	-	-	-	-	34 0
12·43.	The function $\omega(\zeta)$	-	-	-	-	-	-	-	-	-	-	-	341
12.44.	The wetted walls	-	-	-	-	-	-	-	-	-	-	-	341
12.45.	The free streamlines	-	-	-	-	-	-	-	-	-	•	•	342
12 ·46.	Drag, lift, and momen	nt	-	-	-	-	-	-	-	•	-	-	343
12·47.	Discontinuity of $\omega(\zeta)$	-	-	-	-	-	-	-	-	-	-	-	344
12 ·50.	Solution when $\Omega(\zeta) =$	0	-	-	-	-	-	-	-	-	-	-	346
12·51.	Stream impinging on	a pla	te	-	-	-	-	-	-	-	-	-	347
12.52.	The symmetrical case		-	-	-	-	-	•	-	-	-	-	347
	EXAMPLES XII -	-	-	-	-	-	-	•	-	•	•	-	349

CHAPTER XIII

RECTILINEAR VORTICES

13 ·10.	Circular vortex	-	-	-	-	-	-	-	-	-	351
13 ·11.	Pressure due to a circular vortex	:	-	-	-	-	-	-	•	-	353
13.12.	Hollow circular vortex -	-	-	-	-	-	-	-	-	-	354
13 ·13.	Rankine's combined vortex	-	-	-	-	-	-	-	-	-	355
13 ·20.	Rectilinear vortex filament -	-	-	-	-	-	-	-	-	•	356
13 ·21.	Single vortex filament -	-	-	-	-	-	-	-	-	-	357
13 ·22.	Motion of vortex filaments -	-	-	-	-	-	-	-	-	•	357
13.23.	Two vortex filaments	-	•	-	-	-	-	-	•	-	358
13 ·24.	Motion of a system of vortex fila	ment	s	-	-	•	-	-	-	-	358
13·30.	Vortex pair	-	-	-	-	-	-	-	-	-	359
13.31.	Vortex filament parallel to a plan	ne	-	-	-	•	•	-	-	-	360
13 ·32.	Vortex doublet	-	-	-	-	-	-	-	-	-	361
13.33.	Source and vortex	-	-	-	-	-	-		-	-	362
13 ·40.	Vortex filament parallel to two p	perper	ndicul	ar pla	anes	-	-	-	-	-	363
13 ·50.	Vortex in or outside a circular cy	ylinde	er	-	-	-	-	-	-	-	364
13 ·51.	Vortices in the presence of a circ	ular (eylind	\mathbf{ler}	-	-	-	•	-	•	368
13.52.	Stationary vortex filaments in th	ne pre	esence	of a	cyline	der	-	-	-	-	369
13 ·60.	Conformal transformation -	-	-	-	-	-	-	-	-	-	371
13 ·61.	Vortex outside a cylinder -	-	-	-	-	-	-	-	-	-	373
13.64.	Green's equivalent stratum of so	urces	and	vortio	es	•	•	-	•	•	3 73

xvi

											PAGE
13.70.	Vortex sheet	-	-	-	-	-	-	-	-	-	374
13.71.	Single infinite row	-	-	-	-	-	-	-	-	-	375
13.72.	Kármán vortex street -	-	-	-	-	-	-	-	-	-	377
13.73.	The drag due to a vortex wake	-	-	-	-	-	-	-	-	-	380
13 ·8.	Vortex in compressible flow	-	-	-	-	-	-	-	-	•	384
	Examples XIII	-	-	-	-	-	-	-	•	-	385

CHAPTER XIV

FLOWS UNDER GRAVITY WITH A FREE SURFACE

14 ·10.	Flow under gravity with a free su	irface		-	-	-	-	-	-	-	390
14.12.	Potential flow with a free surface		-	-	-	-	-	-	-	-	391
14 ·14.	Steady potential flow with a free	surfa	ce	-	-	-	-	-	-	-	391
14 ·20.	Tangent flows		-	-	-	-	-	-	-	-	396
14.21.	The tangent solution to the vertice	cally o	down	ward	s jet	-	-	-	-	-	397
14·30.	Waves		-	-	-	-	-	-	-	-	399
14·40.	Gerstner's trochoidal wave -		-	-	-	-	-	-	-	-	399
14·41.	Form of the free surface -		-	-	-	-	-	-	-	-	401
14 ·50.	The limiting form of a progressive	e wav	e at	the c	\mathbf{rest}	-	-	-	-	-	405
14.51.	The highest irrotational wave	. .	-	-	-	-	-	-	-	-	406
14 ·60.	An exact irrotational wave		. .	-	-	-	-	-	-	-	406
14.65.	Levi-Civita's surface condition		-	-	-	-	-	-	-	-	409
14 ·70.	An exact non-linear theory of war	ves of	f cons	stant	form		-	-	-	-	409
14 ·71.	The case of finite depth -		-	-	-	-	-	-	-	-	415
14.75.	An exact integral equation for the	e solit	tary v	wave		-	-	-	-	-	416
14·8.	Other problems		-	-	-	-	-	-	-	-	422
	Examples XIV		-	-	-	-	-	-	_	-	423

CHAPTER XV

LINEARISED GRAVITY WAVES

					-				
15.10.	Wave motion	-	-	-	-	-	-	-	426
15.11.	Kinematical condition at the free surface		-	-	-	-	-	-	427
15.12.	Pressure condition at the free surface -	-	-	-	-	-	-	-	428
15.13.	Surface waves		-	-	-	-	-	-	420
15.14.	Speed of propagation -	_	_	_	_	_	-	-	420
15 ·15.	The paths of the particles	_	_	-	-	-	•	•	491
15.17.	Progressive waves on deep water	-		-	-	-	-	-	401
15.18.	Pressure due to a deep water ways	•	•	-	-	-	-	-	432
15·20.	Kinetic energy of progressive wave	•	-	-	-	•	•	-	433
15.21.	Potential energy of progressive waves -	•	-	-	-	-	-	-	433
15.22	Group velocity	-	-	-	-	-	-	-	434
15.92	Drmamical size in the	-	-	•	-	-	-	-	434
15.94	Dynamical significance of group velocity	-	-	-	-	-	-	-	436
10.24.	wave resistance	-	-	-	-	-	-	-	437
15.30.	Stationary waves	-	-	-	-	-	-	-	437
15.31.	Complex potential of stationary waves	-	-	-		-	-	-	43 8
15 ·32.	Paths of the particles in a stationary way	7e -	-	-	-	-	-	-	438
15.33.	Stationary waves in a rectangular tank	-	-	-	-	-	-	-	439

														PAGE
15·34 .	Energy of station	hary '	waves	3	-	-	-	-	•	-	-	-	-	4 40
15.40.	Steady motion	-	-	-	-	-	-	-	-	-	-	-	•	4 40
15.41.	Second approxim	natior	to tl	he wa	ve sp	\mathbf{eed}	-	-	-	-	-	-	-	441
15.42.	Waves at an inte	erface		-	•	-	-	-	-	-	-	-	-	442
15.43.	Steady flow over	a sin	uous	botte	m	-	-	-	-	-	-	-	-	444
15.44.	Waves at an inte	rface	when	n the	upper	r surfa	ace is	free	-	-	-	-	-	445
15.50.	Surface tension	-	-	-	-	-	-	-	-	-	-	-	-	4 46
15.51.	Equation satisfie	d by	the c	omple	ex pot	tentia	1	-	-	-	-	-	-	447
15.52.	Surface waves	-	-	-	-	-	-	-	-	-	-	-	-	447
15 ·53.	Effect of capillari	ity oı	ı wav	res at	an in	terfa	e	-	-	-	-	-	_ ·	447
15.54.	Speed of propaga	ition	-	-	-	-	•	-	-	-	-	-	-	447
15.55.	Effect of wind on	ı deej	o wat	\mathbf{er}	-	-	-	-	-	-	-	-	-	449
15 ·58.	The linearised for	rm of	Levi	-Civit	a's su	irface	cond	ition	-	-	-	-	-	449
15.59.	The method of T	. v. I	Davie	s	-	-	-	-	-	-	-	-	-	451
15.60.	Long waves	-	-	-	-	-	-	-	-	-	-	-	-	451
15.61.	The pressure	-	-	-	-	-	-	-	-	-	-	-	-	453
15.62.	The surface eleva	tion	-	-	-	-	-	-	-	-	-	-	-	453
15.63.	Wave progressing	g in c	ne di	rectio	n onl	у	-	-	-	-	-	-	-	454
15.64.	Change of profile	in lo	ng wa	aves	-	-	-	-	-	-	-	-	-	454
15 ·70.	Effect of small di	isturk	ing f	orces	-	•	-	-	-	-	-	-		455
15.71.	Tides in an equat	torial	cana	1	-	-	-	-	-	-	-	-	-	456
15 ·75.	Exact linearised	theor	у	-	-	-	•	•	-	-	-		-	458
15.86.	Sound waves	-	-	-	-	-	-	-	-	-	-		-	459
15.87.	Plane waves	-	-	-	-	-	-	-	-	-	-	-	-	460
15.88.	Plane waves in a	cylin	drica	l pipe	•	-	-	-	-	-	-	-	-	462
15.89.	Spherical waves	-	-	-		-	-	-	-	-	-	-	-	463
	Examples XV	-	-	-	-	-	-	-	-	-	-	-	-	463

CHAPTER XVI

STOKES' STREAM FUNCTION

16 ·0.	Axisymmetrical motion	IS	-	-	-	-	-	-	-	-	-	-	476
1 6·1.	Stokes' stream function	ı	-	-	-	-	-	-	-	-	-	-	476
16 ·20.	Simple source		-	-	-	-	-	-	-	-	-	-	478
16 ·21.	Submarine explosion -		-	-	-	-	-	-	-	-	-	-	479
16 ·22.	Uniform stream		-	-	-	-	-	-	-	-	-	-	480
16 ·23.	Source in a uniform str	eam		-	-	•	-	-	-	-	-	-	4 80
16 ·24.	Finite line source -		-	-	-	-	-	-	-	•	-	-	481
16 ·25.	Airship forms		-	-	-	-	-	-	•	-	-	-	482
16 ·26.	Source and equal sink.	Do	ublet	;	-	-	-	-	-	-	-	-	483
16·27.	Rankine's solids		-	-	-	-	-	-	•	-	-	-	485
16 ·28.	Green's equivalent stra	ta	-	-	-	-	-	-	-	•	-	-	4 86
16 ·29.	Butler's sphere theorem	ı	-	-	-	-	•	-	-	-	-	-	487
16·30.	Sphere in a stream -		-	-	-	-	-	-	-	-	-	-	488
16·31 .	Kinetic energy		-	-	-	-	-	-	-	-	-	-	489
16.32.	Moving sphere		-	-	-	-	-	-	-	-	-	-	490
16·33.	Pressure on a moving s	pher	е	-	-	-	-	-	-	-	-	-	492
16 ·40.	Image of a source in a	sphe	re	-	-	-	-	-	-	-	-	-	492

xviii

													PAGE
16 · 4 1.	Image of a radial do	oublet	in a s	phere	-	-	-	-	-	-	-	-	493
16·42.	Force on an obstacle	э -	-	•	-	-	-	-	-	-	-	-	494
16·43.	Action of a source o	n a sp	\mathbf{here}	-	-	-	-	-	-	-	-	-	496
16 ·44.	Action of a radial d	oublet	t on a	\mathbf{spher}	е	-	-	-	-	-	-	-	496
16 ·50.	The equation satisfie	ed by	the str	eam f	uncti	on w	hen th	e mo	otion i	is irro	otatio	nal	496
16 ·51.	The velocity -	•	-	-	-	-	-	-	-	-	-	-	497
16.52.	Boundary condition	satist	ied by	the s	trear	n fun	ction	-	-	-	-	-	498
16 ·53.	The sphere -	-	-	-	-	•	-	-	-	-	-	-	498
16.54.	Stream function for	a pla	netary	ellip	soid	•	-	-	-	-	-	-	4 99
16.55.	For a circular disc	-	-	-	•	-	-	-	-	-	•	-	501
16 ·56.	Venturi tube -	-	•	-	-	-	-	-	-	-	-	-	501
16 ·57.	Stream function for	an ov	vary el	lipsoi	f	-	-	•	•	-	-	-	501
16 ·58.	Paraboloid of revolu	ition	-	-	-	-	-	-	-	-	•	-	502
16.60.	Comparison theorem	1 s -	-	•	-	-	-	-	-	-	-	-	503
	Examples XVI -	-	-	-	-	-	-	-	-	-	•	-	507

CHAPTER XVII

SPHERES AND ELLIPSOIDS

17.1.	Spherical harmonics	-	-	•	-	-	-	-	517
17.12.	Kelvin's inversion theorem	-	-	-	-	-	-	-	519
17.13.	Weiss's sphere theorem	-	-	-	-	-	-	-	520
17.20.	Concentric spheres	-	•	-	-	-	-	-	521
17.21.	Concentric spheres moving in the same d	irection	1 -	-	-	-	-	-	523
17.22.	If the outer envelope is at rest -	-	-	-	-	-	-	-	524
17·30.	Two spheres moving in the line of centre	s -	-	•		-	•	-	525
17.31.	Sphere moving perpendicularly to a wall	-	-	•	-	•	-	-	528
17.40.	Two spheres moving at right angles to th	ie line	of cer	ntres	-	-	-	-	528
17.41.	Sphere moving parallel to a wall	-	-	-	-	-	-	-	530
17.50.	Ellipsoidal coordinates	-	-	-	-	-	-	-	5 30
17.51.	Ellipsoidal harmonics	-	•	-	-	-	-	-	533
17.52.	Translatory motion of an ellipsoid -	-	-	-	-	-	-	-	534
17.53.	Rotating ellipsoid	-	-	-	-	-	-	-	536
17.54.	Rotating ellipsoidal shell	-	-	-	-	-	-	•	537
	Examples XVII	-	-	-	-	-	-	-	537

CHAPTER XVIII

SOLID MOVING THROUGH A LIQUID

18.10.	Motion of a solid th	rough	a liqui	id	-	-	-	-	-	-	-	•	545
18 ·20.	Kinetic energy of th	e liqui	id -	-	-	-	-	-	-	-	-	-	546
18.21.	The kinetic energy of	of the	solid	-	-	-	-	-	-	-	-	-	547
18.30,	The wrench -	-	-	-	-	-	-	-	-	-	-	-	547
18·31.	The impulse -	-	•	-	-	-	-	-	-	-	-	-	548
18·32.	Rate of change of th	ie imp	ulse	-	-	-	-	-	-	-	-	-	548
18.40.	Moving origin .	-	-	-	-	-	-	-	· -	-	-	-	550
18.41.	Equations of motion	ı -	-	-	-		-	-	-	-	-	-	551
18.42.	Impulse derived fro	m the	kineti	c ener	gy	-	-	-	-	-	-	-	551

xix

												PAGE
18 · 43 .	Equations in terms of kinet	ic ene	ergy	-	-	-	-	-	-	-	-	552
18.50.	Permanent translation	-	-	-	-	-	-	-	-	-	-	553
18.51.	Permanent rotation -	-	-	-	-	-	-	-	-	-	-	554
18·52.	Solid of revolution -	-	-	-	-	-	-	-	-	-	-	555
18.53.	Stability due to rotation	-	-	-	-	-	-	-	-	-	-	557
18 ·54.	Solid containing a cavity	-	-	-	-	-	-	-	-	-	•	558
18 .60.	Lagrange's equations -	-	-	-	-	-	-	-	-	-	-	558
1 8·61.	Sphere in the presence of a	wall	-	-	-	-	-	-	-	-	-	562
18·70 .	Solid of revolution athwart	an ir	ivisci	d stre	am	-	-	-	-	-	-	563
	Examples XVII -	-	-	-	-	-	-	-	-	-	-	564

CHAPTER XIX

VORTEX MOTION

19.10.	Poisson's equation	-	-	-	-	-	-	-	-	-	-	-	569
19 ·20.	Velocity expressed in	terms	of vo	orticit	y	-	•	-	-	-	-	-	570
19.21.	Flux through a circuit	5	-	-	-	-	-	-	-	-	-	-	571
19.22.	Unbounded fluid	-	-	-	-	-	-	-	-	-	-	-	572
19.23.	Vortex filament -	-	-	-	-	-	-	-	-	•	•	-	572
19.24.	Electrical analogy	-	-	-	-	-	-	-	-	-	-	-	574
19.30.	Kinetic energy -	-	-	-	-	-	-	-	-	-	-	-	574
19.40.	Axisymmetrical motio	\mathbf{ns}	-	-	-	-	-	-	-	•	•	•	575
19.41.	Circular vortex filame	\mathbf{nt}	-	-	-	-	-	-	-	-	-	-	576
19.50.	Equation satisfied by	the s	tream	func	tion	-	-	-	-	-	•	-	577
19.51.	Hill's spherical vortex	5	-	-	-	-	-	-	-	•	-	-	578
19.60.	Aerofoil of finite span	-	-	-	-	-	•	•	•	•	-	-	579
19.61.	Aerofoil of minimum	induc	ed dr	ag		-	•	-	-	•	-	-	582
	Examples XIX	-	-	-	-	-	-	•	•	-	-	•	583

CHAPTER XX

SUBSONIC AND SUPERSONIC FLOW

20.01.	Thermodynamical considerations	,	-	-	-	-	-	-	-	-	588
20.1.	Crocco's equation	-	-	•	-	-	•	-	•	-	591
20.12.	Addition of a constant velocity	-	-	-	-	-	-	-	-	-	591
20.13.	Steady motion	-	-	-	-	-	-	-	-	-	591
20.2.	Steady irrotational motion -	-	•	-	•	-	-	-	-	-	592
20.3.	The hodograph method -	-	-	-	-	-	-	-	-	-	593
20.31.	The hodograph equations for hom	mentr	opic	flow	-	-	-	-	-	•	595
20.32.	The case $m = -1$	-	-	-	-	-	-	•	-	-	596
20·33.	Compressible flow in a convergen	nt-div	vergen	t noz	zle	•	•	•	-	•	597
20.4.	Moving disturbance	-	-	•	-	-	-	•	-	•	601
20.41.	Characteristics	-	•	-	-	-	•	•	-	•	603
20.42.	Characteristics for steady motion	ı	-	-	-	-	-	•	-	-	603
20.43.	Variation of speed along a chara	cteris	stic	-	-	-	-	-	-	-	605
20.44.	Characteristic coordinates -	-	-	-	-	-	•	-	-	-	606
20.45.	Straight-walled nozzle -	-	-	-	-	-	-	-	-	-	608
2 0·5.	Flow round a corner	-	-	-	-	•	-	•	-	-	610
20.6.	Shock waves	-	-	•	-	-	-	-	-	•	612

												PAGE
20.61.	The shock polar	-	-	-	-	-	-	-	•	-	-	616
20 ·7.	Characteristics in isentr	opic fl	ow -	-	-	-	-	-	-	-	-	619
2 0·71.	Uniqueness theorem .	•	-	-	-	-	-	-	-	-	-	623
2 0·8.	Flows dependent on tin	ie -	-	-	-	-	-	-	•	-	-	624
	Examples XX	-	-	•	-	-	-	•	•	-	•	626

CHAPTER XXI VISCOSITY

21 ·01.	The existence of a stress tensor	-	-	-	-	-	-	630
21.02.	The equation of motion for continuous materia	1	-	-	-	-	-	631
21.021.	General solution of the equation of motion	-	-	-	-	-	-	632
21.03.	The stress tensor of a perfect fluid	-	-	-	-	-	-	633
21 .05.	Boundary conditions in a viscous fluid -	-	-	-	-	-	-	635
21 .06.	Action of the fluid on the wall	-	-	-	-	-	-	636
21 ·10.	Dissipation of energy	-	-	-	-	-	-	636
21 ·11.	The flow of heat in a fluid	-	-	-	-	-	-	639
21 ·14.	Components of stress	-	-	-	-	-	-	640
21 ·20.	The equation of motion of a viscous fluid -	-	-	-	-	-	-	641
21 ·22.	Steady motion; no external forces	-	-	-	-	-	-	642
21·30 .	Equation of motion of a viscous liquid -	-	-	-	-	-	-	642
21 ·31.	Similarity; Reynolds number	-	-	-	-	-	-	643
21·34 .	The equation of compatibility	-	-	-	-	-	-	645
21.35.	Equation satisfied by the stream function in tr	wo-di	mens	ional	moti	on	-	646
21·36 .	Equation satisfied by the stream function in a	xisyn	imeti	rical 1	notio	n -	-	646
21·38 .	Circulation in a viscous liquid	-	-	-	-	-	-	647
21.39.	Intrinsic equations	-	-	-	-	-	-	648
21·40 .	Flow between parallel plates	-	-	-	-	-	•	650
21.42.	Flow down an incline	-	-	-	-	-	-	652
21.44.	Flow through a pipe	-	-	-	-	-	-	653
21 ·50.	Radial plane flow	-	-	-	-	-	-	655
21 ·51.	The zeros of $F(v)$ for flow between fixed walls	-	-	-	-	-	-	657
21.52.	The diffuser	-	-	-	-	-	-	658
21. 56,	Steady rotatory motion	-	-	-	-	-	-	660
21 .58.	Effect of viscosity on water waves	-	·_	-	-	-	-	661
21.60.	Time-dependent plane flow in parallel lines	-	-	-	-	-	-	663
21 .61.	On the generation of vorticity by conservative	o forc	es	-	-	-	-	664
21 .62.	Disappearance of a surface of discontinuity	-	-	-	-	-	-	666
21 .63.	Decay of vorticity	-	-	-	-	-	-	666
21 ·70.	Vector circulation	-	-	-	-	-	-	667
21 ·80.	The wake -	-	-	-	-	-	-	668
21 ·81.	The net vorticity in the wake	-	-	-	-	-	-	669
21 ·82.	Vorticity transport	-	-	-	-	-	-	670
21 ·83.	The force on an aerofoil	-	-	-	-	-	-	670
	Examples XXI	-	-	-	-	-	-	672

xxi

CHAPTER XXII

STOKES AND OSEEN FLOWS

		OTOD	T OWER	1112	0.011	. ,	1 10	11 10					
00.1	Concerned means only												PAGE 670
$22 \cdot 1$	General remarks	-	-	-	-	-	-	-	-	-	-	•	679
22.11.	Stokes flow -	-	-	-	-	-	-	-	-	-	-	-	679
$22 \cdot 20.$	Slow streaming pa	ist a sp	here	-	-	-	-	-	-	-	-	•	680
22.21.	Drag on a slowly	moving	spher	re	-	-	-	-	-	-	-	-	681
22.24.	Stokes flow at a d	istance	-	-	-	-	-	-	-	-	-		682
22.311.	Steady Stokes flow	v in tw	o-dim	ensior	ıs	-	-	-	-	-	-	-	683
22.312.	Determinateness of	of the g	eneral	lised o	ompl	ex vel	locitie	es	-	•	-	-	684
22.313.	Vorticity and pres	sure	-	-	-	-	-	-	-	-	-	-	684
$22{\cdot}314.$	The cyclic functio	n -	-	-	-	-	-	-	-	-	-	-	685
$22{\cdot}315.$	Cyclic properties of	of the g	enera	lised o	compl	ex ve	locitie	es	-	-	-	•	686
22.316.	Fundamental stre	ss com	oinatio	ons	-	-	-	-	-	-	-	-	687
22.317.	Force and momen	t on an	ı obsta	acle	-	-	-	-	-	-	-	-	688
22·318.	Uniqueness -	-	-	-	-	-	-	-	-	-	-	-	689
22.319.	Stokes paradox	-	-	-	-	-	-	-	-	-	-	-	690
22·320.	Functional equati	on satis	sfied k	by the	gene	ralise	d con	plex	veloc	ities	-	-	691
22.321.	Solution of the in	terior p	roblei	n for	a circ	le	-	-	-	-	-	-	692
22.40.	Circular cylinder	disturb	ing ur	niform	shea	r flow		-	-	-	-		693
22.50.	Oseen's method	-	-	-	-	-	-	-	-	-	-	•	695
22.51.	Oseen's equation	for stea	dv m	otion	-	-	-	-	-	-	-	-	696
22.52.	Case where the vo	orticity	is per	mendi	cular	to th	e stre	am a	t infi	nitv	-	-	696
22.60.	Oseen streaming	past a s	phere	-	-	_	-	-	-	-	-	-	698
22.62	Moving sphere -	- -		-	-	-	-	-	-	-	-	-	699
22.63	The drag on a spl	here		_	_		-	-	-	-	-		700
22.66	Expansions at sm	all Rev	molda	num	hers	_	-	_	_	_	_		701
99.75	Oseen's approxim	ation a	t a di	etano	0010		-	_	_	_	_	_	702
22.76	Lift and drag	-		-	_	_	_	-	_	_	_	_	704
<i>22°1</i> 0.	Example VVII	-	-	-	-	-	-	-	-	-	-	-	707
	EXAMPLES AALL	-	-	-	-	-	-	-	-	-	-	-	101

CHAPTER XXIII BOUNDARY LAYERS

$23 \cdot 10.$	Introduction	-	-	-	-	-	-	-	-	-	709
23.11.	Flow into a stagnation point	-	-	-	-	-	-	-	-	-	710
23.16.	Stokes problem	-	-	-	-	-	-	-	-	-	713
23 ·20.	The boundary layer equations f	for flo	w pas	st a st	traigh	nt wal	l	-	-	-	714
23.22.	Flow along a curved wall -	-	-	-	-	-	-	-	-	-	715
23.23.	Boundary conditions	-	-	-	-	-	-	-	-	-	717
23.24.	Boundary layer thicknesses	-	-	-	-	-	-	-	-	-	719
23.26.	The stream function near the w	all	-	-	-	-	-	-	-	-	720
23·28.	Separation and attachment	-	-	-	-	-	-	-	-	-	721
23·30.	Boundary layer along a flat pla	te at	zero	incide	ence	-	-	-	-	-	723
23 ·40.	Similar solutions	-	-	-	-	-	-	-	-	•	725
23 .60.	Kármán's momentum integral	-	-	-	-	-	-	-	-	-	728
23.61.	Intrinsic equations	-	-	-	-	-	-	-	-	-	729
	Examples XXIII	-	-	-	-	-	-	-	-	-	730
	Index	•	-	-	-	-	-	-	-	-	733