.

Preface

Preface	VП
Introduction	1
Purpose of the book	1
The early history of the subject	2
Fundamental representations of elastic waves	2
Half space	4
Two half spaces in contact	· 6
Waveguides	6
Impact	9
Wave diffraction	10
Modern work and reading	10
Contents of present book	12
Other books on elastic waves and related subjects	16
References	17
1. Introduction to linear elastodynamics	19
1.1. Introduction; Description of deformation and motion	19
1.2. Tensor notation	20
1.3. Analysis of stress	21
1.3.1. Body and surface forces	21
1.3.2. Components of stress	22
1.3.3. Transformation of the components of stress	24
1.3.4. The stress quadric and the principal stresses	26
1.3.5. Maximum shear stress	28
1.4. Analysis of strain	30
1.4.1. Introduction	30
1.4.2. Finite deformation	31
1.4.3. Infinitesimal strain	32
1.4.4. Relative displacements in neighborhood of point P	33
1.4.4.1. The nature of the rotations	34
1.4.4.2. The nature of the strains	35
1.4.5. Iransformation of components of strain	36
1.4.0. The strain quadric and the principal strains	37
1.4. /. The dilatation '	38

1.5. Stress-strain relations	38
1.5.1. The generalized Hooke's law	38
1.5.2. Hooke's law for the homogeneous, isotropic, elastic medium	30
1.5.3. Elastic constants for the isotropic case	41
1.6. Dynamic equilibrium: stress equations of motion	42
1.7. Displacement equations of motion	45
1.8. The fundamental boundary-initial value problems of elastodynamics	46
1.9. The superposition principle	47
1.10. The principle of conservation of energy	48
1.11. Uniqueness of solution	50
1.12. Further contributions on the uniqueness of solutions	51
1.13. The Graffi elastodynamic reciprocal theorem	57
1.14. Exercises	55
References	56
2. The fundamental waves of elastodynamics and their representations	57
21 Introduction	
2.1. Introduction	. 57
2.2. Fundamental body waves and governing wave equations	. 57
2.2.1. Equivoluminal and dilatational displacement waves	57
2.2.2. Dilatation and rotation waves	58
2.2.3. The Lame solution of the displacement equations of motion	58
2.2.4. Heimnoltz resolution of a vector	60
2.2.5. Completeness of the Lame solution	61
2.2.6. Gauge conditions	62
2.5. Types of body waves and governing equations	63
2.3.1. Une-dimensional plane waves; D'Alembert's solution	63
2.3.2. Infee-dimensional plane waves	65
2.3.3. Spherically symmetric waves	67
2.3.4. Axially symmetric and honaxially symmetric waves	68
2.4. Body wave generation of waves peculiar to boundaries	68
2.5. Time harmonic body waves	69
2.5.1. Heimholtz equation	69
2.5.2. Time harmonic axially symmetric waves	70
2.6. Propagation of surfaces of discontinuity	71
2.6.1. Kinematical conditions	71
2.6.2. Dynamical conditions	73
2.6.3. Wavefront velocities	74
2.6.4. Wavefronts, characteristics and rays	75
2.6.5. Further comments	78
2.7. Wave motion due to body forces	78
2.7.1. Introduction	78
2.7.2. Basic singular solutions; retarded potentials	80
2.1.3. Elastodynamic solution	84
2.7.4. 1 wo-dimensional radiation problems	85
2.1.5. Basic singular solutions of elastodynamics	86
2.7.5.1. Point load problem	86
2.7.5.2. Center of compression	91
2.7.5.3. Center of rotation	92
2.7.5.4. Point load time harmonic source	93

х

2755 Retarded potentials corresponding to a time	
harmonic source: steady-state solution	94
olution of boundary-initial value problems: integral representations	04
nitial value or Cauchy problems	04
9.1 One-dimensional initial value problem and related characteristics	40
2.9.1.1. Initial displacement condition	02
2912 Initial velocity condition	00
2913 Discontinuities in initial values	101
9.2 The three- and two-dimensional initial value problems	101
9.3. The method of characteristics in one-dimensional problems	105
2021 First hungsholic theorem; initial value problem	107
and numerical integration method	110
2032 Second hyperbolic theorem: observeristic initial	110
when problem and numerical interaction method	112
2.0.2.2 Boundary initial value problems and summarical	112
2,7,5.5. Boundary-initial value problems and numerical	110
Integration memoria	114
DAG140340 9MA88	110
chices	119
ction and refraction of time harmonic waves at an interface	119
eflection of P and SV waves of plane strain from the boundary	119
f an elastic half space	
1.1. Mixed conditions on boundary	123
3.1.1.1. Lubricated-rigid boundary	123
3.1.1.2. In-plane constrained boundary	125
1.2. Free boundary	125
3.1.2.1. Reflection of a P wave	125
3.1.2.2. Reflection of an SV wave	131
1.3. Elastically restrained boundary	133
1.4. Free boundary special cases	135
3.1.4.1. Normal incidence	135
3.1.4.2. Grazing incidence	136
3.1.4.3. SV wave incident at $\beta = \pi/4$	138
3.1.4.4. Total mode conversion	139
3.1.4.5. Reflection of SV waves at critical angles	139
3.1.4.6. Reflection of wave pairs	145
3.1.4.7. Rayleigh surface waves	146
1.5. Rigid boundary	140
effection of SH waves from the boundary of an elastic half mace	152
2.1. Free boundary	155
2.2. Rigid boundary	155
effection and refraction of P and SV waves at an interface	156
3.1. The solid-solid interface, general solution	150
3.2. Solid-solid interface: special cases	140
3.3.2.1. Normal incidence	102
3.3.2.2. Grazing incidence	102
3.3.2.3. Reflection at critical angles of insidences total automice	103
3.3.2.4. Stoneley interface waves	103
 3.3.2.1. Normal incidence 3.3.2.2. Grazing incidence 3.3.2.3. Reflection at critical angles of incidence; total reflection 3.3.2.4. Stoneley interface waves 	

3.3.3. The fluid-solid interface	168
3.4. Reflection and refraction of SH waves at an interface	169
3.4.1. General solution	169
3.4.2. Special cases	173
3.5. Exercises	174
References	177
4. Time harmonic waves in elastic waveguides	178
4.1. Waves in an infinite plate in plane strain	178
4.1.1. Mixed conditions on plate faces	181
4.1.1.1. Modes of propagation, frequency, and phase	
velocity spectra	182
4.1.1.2. Wave groups and stationary phase	186
4.1.1.3. Spectral analysis of wave train (or steady)	
propagation	188
4.1.1.4. Relation between group velocity and the	
velocity of energy transmission	192
4.1.2. Elastically restrained plate faces	194
4.1.3. Traction free plate faces; Rayleigh-Lamb frequency equation	196
4.1.3.1. General character of Rayleigh-Lamb frequency	
spectrum; corresponding modes and waves	197
4.1.3.2. Further on real- and imaginary-wave number	
segments and corresponding modes and waves	201
4.1.3.3. Further on complex-wave number segments and	
corresponding modes and waves	207
4.2. SH waves in an infinite plate	209
4.3. Love waves	211
4.4. Waves in an infinite elastic rod of circular cross section	214
4.4.1. Axially symmetric torsional waves	217
4.4.2. Axially symmetric compressional waves	220
4.4.3. Nonaxially symmetric or flexural waves	223
4.5. Waves in circular cylindrical shells and layered media; literature	226
4.6. Exercises	226
References	229

5. Integral transforms, related asymptotics, and introductory applications 231

5.1. Introduction	231
5.2. Fourier integral theorem	231
5.3. Laplace transform	232
5.4. Further properties of the Laplace transform and its inverse	237
5.4.1. Uniqueness of $f(p)$	237
5.4.2. Linearity of integral operator	237
5.4.3. Transforms of derivatives of $f(t)$	237
5.4.4. Convolution of two functions	238
5.4.5. Inverse of $f(p)/p$	239
5.4.6. Inverse of $exp(-\alpha p)f(p)$	239
5.4.7. Laplace transforms of some functions $f(t)$	240

- *	71	T.
~ 2	71	L

5.4.7.1. Transform of t^{k-1} , $k > 0$	240
5.4.7.2. Transform of Dirac delta function $\delta(t)$	240
5.4.7.3. Laplace-transform tables	241
5.5. Bilateral Laplace transform	241
5.6. Exponential Fourier transforms	242
5.6.1, Exponential Fourier transform with real argument	242
5.6.2. Exponential Fourier transform with complex argument	245
5.7. Fourier sine and cosine transforms	246
5.8. Hankel transforms and properties	248
5.9. Asymptotic expansions	250
5.9.1. The nature of asymptotic expansions	251
5.9.2. Poincaré's definition of an asymptotic expansion	252
5.9.3. Some properties of asymptotic expansions	253
5.10. Asymptotic expansions of integrals	255
5.10.1. Types of integrals: critical points	256
5 10.2. Asymptotic expansion of Laplace integrals	256
5 10.2.1 Integration by parts	257
5.10.2.2. Watson's lemma	257
5.10.2.3 Asymptotic expansion of $\mathcal{L}(p)$: short time	207
(wavefront) approximation	257
5 10 2.4 Long time approximation; solution of the	237
static problem	258
5.10.3 Asymptotic expansion of Fourier integrals	261
5'10 4 I aplace's method	262
5.10.5. Method of steenest descents	262
5.10.6 Method of stationary phase	204
5.11 Cavity source problems	277
5.11.1 Suberical eavity subjected to sudden uniform pressure	277
5.11.2. Circular adjudrical cavity subjected to sudden	211
uniform pressure	282
5 11 3 Short time (wavefront) and long time approximations	202
in the cylindrical cavity problem	280
5.12 Everying	202
Paterenses	271
inductives	290
. Transient waves in an elastic half space	298
6.1. Introduction	298
6.2. Plane strain problems	298
6.2.1. Lamb's problem for the surface normal line load source	299
6.2.1.1. Exact inversion by Cagniard-de Hoop method	302
6.2.1.2. Evaluation of exact solution for the surface response	314
6.2.1.3. Evaluation of exact solution for the response	
at the plane of symmetry	318
6.2.1.4. Wavefront approximations in the Cagniard de Hoop	
method	319
6215 Wavefront approximations by the method of steepest descents	373
6.2.2. Lamb's problem for the buried line dilatational source	370
6.3. Axially symmetric problems	337
	<u>م</u> ور ر

XIП

6.3.1. The Lamb problems for the surface and buried vertical	323
point load sources	
6.3.1.1. Inversion for surface displacements in problem	
of surface normal point load source: numerical	
evaluation	336
6.3.1.2. Numerical evaluation of the interior solution.	
wavefront behaviors, for surface normal	
boint load source	340
6.3.1.3. Inversion for surface displacements in problem	540
of buried vertical point load source: numerical	
evaluation and wavefront behaviors	244
64. A nonexisymmetric problem: the suddenly applied normal point	J-1-1
load that travels on the surface	247
641 Statement of the problem and formal Laplace transformed	347
olution	247
642 Proliminarias in the event investion by Countered do Heren	347
0.4.2. Freinnmaries in the exact inversion by Cagniard-de Hoop	
	351
6.4.3. Exact inversion for the interior and supersonic load	
motion; dilatational wave	352
6.4.4. Wavefront approximations	361
6.5. Exercises	362
References	365
7. Transient waves in elastic waveguides	367
7.1 Approvimate theories and one dimensional problems	0.07
7.1. Approximate theories and one dimensional problems	307
7.1.1. Approximate metrics for axially symmetric compressional	A/7
Waves in a rou	307
7.1.1.1. Hamilton's principle	369
7.1.2. Love-Kayleign rod	3/1
1.1.2. Approximate theories for nexural (nonaxially symmetric)	
wayes in a rod or beam	374
7.1.2.1. Bernoull-Euler or elementary bending theory	374
7.1.2.2. Timoshenko bending theory	377
7.1.3. Boundary-initial value problems based on approximate	
theories	382
7.1.3.1. Longitudinal impact problem based on	
Love-Rayleigh rod theory; exact solution	382
7.1.3.2. Long time-far field approximation in the	
longitudinal impact problem	387
7.1.3.3. Problems based on the Bernoulli-Euler and	
Timoshenko bending theories; exact solutions	394
7.1.3.4. Long-time response for sudden shear load	
on an infinite Timoshenko beam	404 .
7.2. Problems for the infinite plate in plane strain	409
7.2.1. Excitation of plate by two symmetric normal line loads:	
formal solution, numerical evaluation and approximations	409
7.2.1.1. Inversion of spatial transform first	411
7.2.1.2. Inversion of time transform first	425

XIV

7.2.2. Excitation of plate by two antisymmetric normal line	
loads and by a sincle normal line load	470
7.3 Edge load problems for the semi-infinite wavequide	420
7.3.1. Introduction	430
7.3.2. Plate in plane strain with mixed edge conditions:	450
formal solutions	432
7.3.2.1. Longitudinal impact problem	432
7.3.2.2. Mixed pressure shock problem	434
7.3.2.3. Mixed edge conditions; problems with antisymmetric	
excitation	435
7.3.2.4. Formal solutions for other waveguides	435
7.3.3. Plate in plane strain with mixed edge conditions;	
approximate solutions	436
7.3.3.1. Long-time and/or far-field approximations	436
7.3.3.2. Short-time-near-field, wavefront approximations	438
7.3.4. Plate in plane strain with nonmixed edge conditions;	
formal long-time solutions and their inversions	444
7.3.4.1. Inversion integral forms	444
1.3.4.2. Boundedness condition; integral equations for	
The edge unknowns 7.3.4.3 Droblem A: Normized pressure sheals formal	446
long-time solution	440
7.344 Problem A: Nonmixed measure shock: long-	449
time solution	455
7.3.4.5. Problem B: Nonmixed line load: formal	-100
long-time solution	457
7.3.4.6. Problem B: Nonmixed line load; long-time	
solution	463
7.3.4.7. Problems involving nonmixed edge displacements;	
comments	465
7.4. Axially symmetric problems for the infinite plate	466
7.4.1. Excitation by two symmetric normal point loads	466
7.4.2. Mixed edge condition problem; sudden normal displacement on	
CITCULAR CAVITY WALL	471
7.9.5. Excitation by a time-dependent thermal field; numerical	
75 Evercises	414
References	4/2
	483
8. Pulse scattering by holf plans, onlindring and only the total	407
or x unse scattering by datt-plane, cylinorical and spherical obstacles	485
8.1. Introduction: Wave features in a scattering problem	402
8.2. Plane-clastic pulse diffraction by half-plane obstacles	405
8.2.1. Introduction	487
8.2.2. Diffraction of a plane horizontally polarized shear pulse	-107
by a traction free half plane	488
8.2.2.1. Statement of the problem	488
8.2.2.2. Formal solution of the problem	489
8.2.2.3. Inversion of the formal solution and discussion	
of its nature	492

.

1997 - 19

.

.

0.0.2 Differentia	n of a plane harizontally palarized shear pulse	
o.2.5. Dimacuo by a rigid	h of a plane horizontally polarized shear pulse	496
824 Diffractio	n of a plane dilatational pulse by a traction	
free half	plane	496
8.2.4.1. S	tatement of the problem	496
8.2.4.2. F	ormal solution of the problem	498
8.2.4.3. F	actorization of the function $F(\zeta)$	502
8.2.4.4. II	aversion of formal solution and discussion of	
it	s nature	504
8.3. Elastic pulse sc	attering by cylindrical and spherical obstacles	517
8.3.1. Introduct	ion	517
8.3.2. Scattering	g of an elastic pulse by a circular cylindrical	510
cavity	Line load annual common of the	810
8.3.2.1.	Line load source; general leatures of the	519
8272	wave system Eviadlander's representation of solution	520
0.3.2.2. 8373	Normal line load source on cavity wall:	520
0,0.2.3.	formal solution	521
8374	Normal line load source on cavity wall	521
0,0.2.4.	exact inversion	524
8.3.2.5	Normal line load source on cavity wall:	
	Rayleigh waves and the long time-far field	
	solution	529
8.3.2.6.	Diffraction of plane compressional pulse by	
	cavity; formal solution	536
8.3.2.7.	Diffraction of plane compressional pulse by	
	cavity; exact inversion	539
8.3.2.8.	Diffraction of plane compressional pulse by	
	cavity; numerical evaluation of solution	542
8.3.2.9.	Diffraction of plane compression pulse by	
	cavity; Fourier series solution, comparison	545
0 0 0 10	of the two methods and results	545
8.3.2.10.	Diffraction of plane compressional pulse by	
072 Castlanin	cavity; approximations and comments	330
o.5.5. Scauering	g of a plane compressional pulse by a circular	556
2331 T	be problem	556
8332 7	he literature, methods and results	556
8.3.4. Diffraction	on of an elastic pulse by a spherical cavity:	
a brief d	iscussion	560
8.3.4.1. 7	The literature	560
8.3.4.2. N	Aethod of solution; results	560
8.4. Exercises		568
References		571
Supplementary rea	ding	573
On text material		573
On additional effect	8	576
References		578
Author Index		581
Subject Index		586

XVI