CONTENTS

Chapter 1

Magnetostrictive Metals and Piezomagnetic Ceramics as Transducer Materials

Yoshimitsu Kikuchi

1	Introduction	1
	1.1. Ultrasonic Generators and Detectors	1
	1.2. Magnetostriction Filters	4
2.	Fundamentals of Magnetostriction	4
	2.1. Static Magnetostriction Phenomena	4
	2.2. Magnetostrictive Forces	5
	2.3. Magnetrostriction Constants	7
	2.4. Material Criteria	12
	2.5. Effect of Hydrostatic Pressure on Magnetostriction	14
	2.6. Effect of Mechanical Stress on Magnetostriction	15
3.	Eddy Current Effects on Material Constants	16
4.	Relation between Static and Dynamic Magnetostriction	
	Phenomena	19
5.	Methods of Material Measurement	20
	5.1. Motional Impedance Methods	20
	5.2. Measurement under Hydrostatic Pressure	22
	5.3. Measurement under Static Compressive Stress	23
6.	Magnetostrictive Properties of Materials	24
	6.1. Nickel	24
	6.2. Ni–Fe Alloy	29
	6.3. Al-Fe Alloy	30
	6.4. Other metals	34

Contents

	6.5.	Cobalt Rondel	37
	6.6.	Ferrites	38
	6.7.	Theoretical Models for the Characteristics of Magnetostric-	
		tion in Polycrystalline Metals	41
7.	Cons	ideration of Large Signal Operation	43
	7.1.	Theoretical Approach	43
	7.2.	Experimental Approach	48
Ref	erence	es	55

Chapter 2

Piezoelectric Crystals and Ceramics

Don Berlincourt

1.	Introduction		•	. 63
2.	Fundamentals	of Piezoelectricity	• •	. 64
	2.1. Basic Ad	ction and Linear Static Equations	•	. 64
	2.2. Effect of	f Crystal Symmetry	•	. 66
	2.3. The Piez	zoelectric Coupling Factor	•	. 66
3.	Modes of Vib	ration of Piezoelectric Elements	•	. 72
	3.1. Low-Fre	equency Modes	•	. 72
	3.2. High-Fr	requency or Thickness Modes	•	. 75
	3.3. The Effe	ective Coupling Factor—The Piezoelectric Resor	iato	r 77
4.	Ferroelectricit	у		. 80
	4.1. General	Description		. 80
	4.2. Piezoele	ectricity in Ferroelectrics—The Piezoelectric		
	Ceran	nics		. 81
	4.3. Nonline	earities—Domain Effects		. 81
	4.4. Phase T	ransitions		. 83
5.	Dissipation in	Piezoelectric Materials		. 84
	5.1. General			. 84
	5.2. Effects of	on Transducer Efficiency and Power Capacity .		. 86
6.	Parameters of	Important Piezoelectric Crystals	•	. 89
	6.1. Older P	iezoelectric Crystals		. 89
	6.2. Newer	Piezoelectric Crystals		. 93
7.	Parameters of	Piezoelectric Ceramics		. 100
	7.1. General			. 100
	7.2. Aging in	n Piezoelectric Ceramics and Effects of High S	Stati	с
	Stress	3		. 110

viii

Contents

Notation	•								•											•				•	•	•	119
References	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	121

Chapter 3

3.3.

Index

Pie		tric Transducer Materials and Techniques for Ultrasonic De- operating Above 100 MHz	
	A . E	I. Meitzler	
1.	Intro	duction	125
	1.1.	Scope of Chapter	125
	1.2.	Results from the Equivalent Circuit Analysis of High-Fre-	
		quency Ultrasonic Devices Using Piezoelectric Transducers	126
	1.3.	Properties of Transducer Materials and Acoustic Materials	
		of Interest for High-Frequency Applications	132
2.	Mate	erials and Techniques for Bonded Plate Transducers	141
	2.1.	Single-Crystal Materials	141
	2.2.	Ceramic Transducer Materials	154
	2.3.	Bonding and Lapping Techniques for High-Frequency	
		Transducers	158
3.	Evap	oorated and Sputtered Film Transducers	163
	3.1.	Electroelastic Properties of Cadmium Sulfide and Zinc Oxide	
		in the Form of Thin Films	163
	3.2.	Evaporation Techniques for Forming CdS Transducers	165

Sputtering Techniques for Forming ZnO Transducers . .

3.4. Other Compounds of Potential Interest for Film Transducers

i	٦	r
	4	2