Contents

Preface		v		
Pro L	blogue Jnits and related matters	xiii xiii		
	Dimensional analysis			
F	Further reading			
1	Fundamental Concepts Relating to Fluids	1		
	1.1 The characteristics of fluids	1		
	1.2 Properties of fluids	5		
	1.3 The perfect gas: equation of state	10		
	1.4 Compressibility	12		
	1.5 Viscosity	13		
	1.6 Surface tension	23		
	Reference	27		
	Further reading	27		
	Problems	27		
2	Fluids in Equilibrium (Fluid 'Statics')	29		
	2.1 Introduction	29		
	2.2 Variation of pressure with position in a fluid	29		
	2.3 The measurement of pressure	34		
	2.4 Hydrostatic thrusts on submerged surfaces	44		
	2.5 Buoyancy	51		
	2.6 The stability of unconstrained bodies in fluids	53		
	2.7 Equilibrium of moving fluids	60		
	Further reading	64		
	Problems	64		
3	The Principles of Fluid Motion	68		
	3.1 Introduction	68		
	3.2 Variation of flow parameters in time and space	68		
	3.3 Describing the pattern of flow	70		
	3.4 Continuity	73		
	3.5 Bernoulli's equation	75		
	3.6 General energy equation for steady flow of any fluid	80		
	3.7 Pressure variation perpendicular to streamlines	89		
	3.8 Simple applications of Bernoulli's equation	92		
	References	111		
	Further reading	111		
	Problems	112		

4	The Momentum Equation4.1Introduction4.2The momentum equation for steady flow4.3Applications of the momentum equationFurther readingProblems	114 114 114 118 134 134
5	 Two Kinds of Flow 5.1 Introduction 5.2 Reynolds's demonstration of the different kinds of flow 5.3 The criterion of flow 5.4 Laminar and turbulent flow in pipes 5.5 Eddy viscosity and the mixing length hypothesis 5.6 The boundary layer and the viscous sub-layer 5.7 Distribution of shear stress in a circular pipe Further reading Problems 	136 136 139 143 149 152 153 156 156
6	 Laminar Flow between Solid Boundaries 6.1 Introduction 6.2 Steady laminar flow in circular pipes: the Hagen-Poiseuille law 6.3 Steady laminar flow between parallel planes 6.4 Steady laminar flow between parallel planes, one of which is moving 6.5 The measurement of viscosity 6.6 Fundamentals of the theory of hydrodynamic lubrication 6.7 Laminar flow through porous media References Further reading Problems 	157 157 157 164 169 173 181 200 203 203 203
7	Turbulent Flow in Pipes7.1Introduction7.2Head lost to friction in a pipe7.3Variation of friction factor7.4Friction in non-circular conduits7.5Other head losses in pipes7.6Total head and pressure lines7.7Combination of pipes7.8Conditions near the entry to the pipe7.9Quasi-steady flow in pipesReferencesFurther readingProblems	206 206 208 215 216 225 229 234 236 239 240 240

8	Boundary Layers and Wakes	244
	8.1 Introduction	244
	8.2 Description of the boundary layer	245
	8.3 The thickness of the boundary layer	247
	8.4 The momentum equation applied to the boundary layer	248
	8.5 The laminar boundary layer on a flat plate with zero	
	pressure gradient	251
	8.6 The turbulent boundary layer on a smooth flat plate with	
	zero pressure gradient	255
	8.7 Friction drag for laminar and turbulent boundary layers together	258
	8.8 Effect of pressure gradient	261
	8.9 Boundary layer control	279
	8.10 Effect of compressibility on drag	280
	8.11 Distribution of velocity in turbulent flow	282
	8.12 Free turbulence	291
	References	292
	Further reading	292
	Problems	293
9	Physical Similarity	295
	9.1 Introduction	295
	9.2 Types of physical similarity	296
	9.3 Ratios of forces arising in dynamic similarity	298
	9.4 The application of dynamic similarity	305
	9.5 Ship resistance	308
	Further reading	313
	Problems	313
10	D The Flow of an Ideal Fluid	
	10.1 Introduction	315
	10.2 The stream function	316
	10.3 Circulation and vorticity	318
	10.4 Velocity potential	322
	10.5 Flow nets	323
	10.6 Combining flow patterns	328
	10.7 Basic patterns of flow	329
	10.8 Combinations of basic flow patterns	337
	10.9 Elementary aerofoil theory	350
	References	358
	Further reading	358
	Problems	358
11	Flow with a Free Surface	367
	11.1 Introduction	362
	11.2 Types of flow in open channels	363
	· · ·	203
		ix

	11.3	The steady-flow energy equation for open channels	364
	11.4	Steady uniform flow — the Chézy equation	367
	11.5	The boundary layer in open channels	371
	11.6	Optimum shape of cross-section	373
	11.7	Flow in closed conduits only partly full	375
	11.8	Simple waves and surges in open channels	376
	11.9	Specific energy and alternative depths of flow	379
	11.10	The hydraulic jump	385
	11.11	The occurrence of critical conditions	391
	11.12	Gradually varied flow	402
	11.13	Oscillatory waves	411
	11.14	Conclusion	424
	Refer	ences	424
	Furth	er reading	425
	Prob	ems	425
12	Flow	with Appreciable Changes of Density	429
	12.1	Introduction	429
	12.2	Thermodynamic concepts	429
	12.3	Energy equation with variable density: static and stagnation	
		temperature	433
	12.4	Elastic waves	434
	12.5	Shock waves	440
	12.6	Supersonic flow round a corner	452
	12.7	The pitot tube in flow with variable density	457
	12.8	One-dimensional flow with negligible friction	460
	12.9	High-speed flow past an aerofoil	467
	12.10	Flow with variable density in pipes of constant cross-section	470
	12.11	Analogy between flow with variable density and flow	
	D . C	with a free surface	480
	Reter	ences	481
	Furth	ler reading	482
	Prob	ems	482
13	Unste	eady Flow	485
	13.1	Introduction	485
	13.2	Inertia pressure	485
	13.3	Pressure transients	488
	13.4	Surge tanks	513
	Refer	ence	516
	Furth	her reading	516
	Prob	ems	517
14	The F	rinciples of Fluid Machines	519
	14.1	Introduction	519

14.2	Reciprocating pumps	520
14.3	Rotodynamic machines	524
14.4	Rotodynamic pumps	556
14.5	Hydrodynamic transmissions	573
14.6	The effect of size on the efficiency of fluid machines	577
Refer	ences	578
Furth	Further reading	
Probl	ems	579
Appendix	1 First and Second Moments and Centroids	584
A1.1	First moments	584
A1.2	Second moments	585
Appendix 2 Measurements and Flow Visualization		588
A2.1	Measurement of velocity	588
A2.2	Measurement of discharge	590
A2.3	Measurement of surface elevation	592
A2.4	Measurement of flow direction	593
A2.5	Flow visualization	594
Furth	ner reading	596
Appendix	3 Tables of Gas Flow Functions	598
Appendix	4 Algebraic Symbols	608
Answers to	o Problems	615
Index		619