Α.	Tr	ansition from Laminar to Turbulent Flow	3
		Hugh L. Dryden, National Aeronautics and Space Administra- tion, Washington, D.C.	
	1.	Introduction	3
	2.	Transition on a Flat Plate in a Stream of Constant Velocity	3
		Effect of Pressure Gradient on Transition on a Flat Plate	6
	4.	Effect of Curvature of Surface on Transition of a Two-Di-	
		mensional Boundary Layer	8
	5.	Effect of Surface Roughness and Waviness on Transition of	
		a Two-Dimensional Boundary Layer	8
	6.	Application of Dimensional Analysis to Transition of a Two-	
		Dimensional Boundary Layer	19
	7.	Transition of Shear Layers in the Free Fluid	21
	8.	Transition of Shear Layers with Reattachment Following	
		Laminar Separation	24
		Breakdown of Laminar Flow vs. Transition	27
		Tentative Conceptual Picture of Transition	28
		Theory of the Influence of Turbulence on Transition	30
	12.	Schlichting's Procedure for Computing Transition on an	
		Airfoil	32
		Adequacy of Transition Theories Based on Local Parameters	37
	14.	Transition to Turbulent Flow in a Pipe of Circular Cross	
	1 1	Section	39
		Transition in Pipes of Noncircular Cross Section	40
		Transition on an Elliptic Cylinder	41
		Transition on Airfoils	41
	18.	Transition on Airplane Configurations and on Airplanes in	45
	10	Flight Transition on Bodies of Revolution	$\begin{array}{c} 45\\ 46\end{array}$
		Transition in Flow between Rotating Cylinders	40 49
		Transition in Flow near Rotating Disks	49 52
		Transition in Flow at Boundary of a Jet	52 52
		Transition at Subsonic Speed as Affected by Heat Transfer	53
		General Remarks on Transition at Supersonic Speed	54
		Effect of Mach Number on Transition for Bodies without	01
		Heat Transfer at Supersonic Speeds	55
	26.	Effect of Heat Transfer on Transition at Supersonic Speeds	63
		Present Status and Future Direction	67
	2 8.	Cited References	70

В.	Turbulent Flow	75
	Galen B. Schubauer, Fluid Mechanics Section, National Bureau of Standards, Washington, D. C. C. M. Tchen, Aerodynamics Section, National Bureau of Standards, Washington, D. C.	
	Chapter 1. Introduction	
	1. Subject Treatment	75
	2. Nature of Turbulent Flow	76 70
	3. Diffusiveness of Turbulence	79
	Chapter 2. General Hydrodynamical Equations for the Turbu- lent Motion of a Compressible Fluid	
	4. Equations of Continuity and Momentum	80
	5. Equation of Kinetic Energy	83
	6. Equation of Energy and Enthalpy	85
	Chapter 3. Turbulent Boundary Layer of a Compressible Fluid	
	7. Introduction	87
	8. Fundamental Equations of Motion of a Compressible Bound-	00
	ary Layer 9. Relationships between Velocity, Pressure, and Temperature	89
	Distributions	90
	10. Phenomena of Transport of Properties in a Turbulent Fluid	97
	11. Reynolds Analogy between Heat Transfer and Skin Friction	104
	12. Basis of Skin Friction Theories	107
	13. Empirical Laws of Skin Friction	113
	14. Comparison between Experiments and Theories	116
	Chapter 4. General Treatment of Incompressible Mean Flow along Walls	
	15. Power Laws	119
	16. Wall Law and Velocity-Defect Law	122
	17. Logarithmic Formulas	124
	 Smooth Wall Incompressible Skin Friction Laws Effect of Pressure Gradient 	$\begin{array}{c} 127 \\ 129 \end{array}$
	20. Equilibrium Boundary Layers According to Clauser	$129 \\ 135$
	21. Law of the Wake According to Coles	139
	22. Mixing Length and Eddy Viscosity in Boundary Layer Flows	143
	23. Effect of Roughness	147
	24. Integral Methods for Calculating Boundary Layer Develop-	
	ment	153
	25. Three-Dimensional Effects	156
	Chapter 5. Free Turbulent Flows	
	26. Types and General Features	158
	•	158

27. Laws of Mean Spreading and Decay	159
28. General Form and Structure	163
29. Transport Processes in Free Turbulent Flow	168
30. Velocity Distribution Formulas for Jets and Wakes	172
31. Effect of Density Differences and Compressibility on Jets	
with Surrounding Air Stationary	176
32. Effect of Axial Motion of Surrounding Air on Jets	179
Chapter 6. Turbulent Structure of Shear Flows	
33. The Nature of the Subject	184
34. References on Structure of Shear Turbulence	185
35. Cited References	190
C. Statistical Theories of Turbulence	196
C. C. Lin, Department of Mathematics, Massachusetts In-	
stitute of Technology, Cambridge, Massachusetts	
Chapter 1. Basic Concepts	
1. Introduction	196
2. The Mean Flow and the Reynolds Stresses	197
3. Frequency Distributions and Statistical Averages	198
4. Homogeneous Fields of Turbulence	200
5. Conventional Approach to the Statistical Theory of Turbu-	
lence	201
Chapter 2. Mathematical Formulation of the Theory of Homogeneous Turbulence	
6. Kinematics of Homogeneous Isotropic Turbulence. Correla-	
tion Theory	202
7. Dynamics of Isotropic Turbulence	208
8. The Spectral Theory of Isotropic Turbulence	210
9. Spectral Analysis in One Dimension	214
10. Spectral Analysis in Three Dimensions	216
11. General Theory of Homogeneous Anisotropic Turbulence	218
Chapter 3. Physical Aspects of the Theory of Homogeneous Turbulence	
12. Large Scale Structure of Turbulence	219
13. Small Scale Structure of Turbulence. Kolmogoroff's Theory	$219 \\ 221$
14. Considerations of Similarity	$\frac{221}{225}$
15. The Process of Decay	$\frac{220}{230}$
16. The Quasi-Gaussian Approximation	$\frac{230}{236}$
17. Hypotheses on Energy Transfer	$\frac{230}{238}$
Chapter 4. Turbulent Diffusion and Transfer	200
18. Diffusion by Continuous Movements	240
19. Analysis Involving More Than One Particle	$\frac{240}{243}$
	410

20. Temperature Fluctuations in Homogeneous Turbulence 21. Statistical Theory of Shear Flow	$\begin{array}{c} 244 \\ 245 \end{array}$
Chapter 5. Other Aspects of the Problem of Turbulence	
22. Turbulent Motion in a Compressible Fluid	247
23. Magneto-Hydrodynamic Turbulence	248
24. Some Aerodynamic Problems	249
25. Cited References	251
D. Conduction of Heat	254
M. Yachter, Special Projects Department, The M. W. Kellogg Company, Jersey City, New Jersey E. Mayer, Arde Associates, Newark, New Jersey. Now with	
Rocketdyne, division of North American Aviation, Inc.	
Chapter 1. Introduction	
1. General Remarks	254
2. Mathematical Formulation	255
3. Thermal Property Data and Range of Heat Transfer Coeffi-	
cients	260
Chapter 2. One-Dimensional Heat Conduction in a Homogeneous Medium	
4. Slab of Thickness d	260
5. The Semi-Infinite Solid	262
6. Applications	263
Chapter 3. Transient Radial Heat Conduction in a Homoge- neous Hollow Cylinder	
7. Classical Results for Newtonian Heat Transfer	266
8. Applications. Thermal Stresses	268
9. Remarks on Thermal Shock	270
Chapter 4. Transient Heat Conduction in a Unidimensional Composite Slab	
10. General Results for Newtonian Heat Transfer	272
11. The "Thin" Shield	276
12. "Thick" Thermal Shields	277
13. Design Criterion for Minimum Weight	278
14. Remarks on the Composite Hollow Cylinder	280
Chapter 5. Some Special Problems	
15. Variable Thermal Properties	280
16. Surface Melting and Erosion	284
17. Axial Heat Conduction in Nozzle Walls	285
18. Cited References	287

E. Convective Heat Transfer and Friction in Flow of Liquids	288
R. G. Deissler, Lewis Flight Propulsion Laboratory, National Aeronautics and Space Administration, Cleveland, Ohio R. H. Sabersky, Division of Engineering, California Institute of Technology, Pasadena, California	
Chapter 1. Turbulent Heat Transfer and Friction in Smooth Passages	
1. Introduction	288
2. Basic Equations	288
3. Expressions for Eddy Diffusivity	290
4. Analysis for Constant Fluid Properties	292
5. Analysis for Variable Fluid Properties	303
6. Concluding Remarks	313
Chapter 2. Survey of Problems in Boiling Heat Transfer	
7. Introduction	313
8. General Results	314
9. Nucleate Boiling	319
10. Film Boiling	333
11. Closing Remarks	334
12. Cited References and Bibliography	335
	000
F. Convective Heat Transfer in Gases	339
E. R. van Driest, North American Aviation, Incorporated, Downey, California	
1. Introduction	339
2. The Mechanism of Convective Heat Transfer	339
Chapter 1. Survey of Theoretical Results Applicable to Aerodynamic Heat Transfer. Status of Experimental Knowledge	
LAMINAR FLOW	
3. Flat Plate Solution	341
4. Heat Transfer	348
5. Numerical Results for Zero Pressure and Temperature	
Gradients along the Flow	350
6. Cone Solution	362
7. Stagnation Point Solution	365
8. Effect of Variable Free Stream Pressure and Variable Wall	
Temperature	368
9. Status of Experimental Knowledge	368

TURBULENT FLO	ЭW
---------------	----

10. Flat Plate Solution	370
11. Heat Transfer	372
12. Cone Solution	388
13. Stagnation Point Solution	388
14. Effects of Variable Free Stream Pressure, Wall Temperature,	
etc.	391
15. Rough Walls	391
16. Status of Experimental Knowledge	391
TRANSITION	
17. Stability of the Laminar Boundary Layer and Relation to	
Transition	396
18. Effect of Supply Tunnel Turbulence	399
19. Effect of Surface Roughness	403
Chapter 2. Application of Theory to Engineering Problems at High Speeds	
20. Aerodynamic Heating of High Speed Vehicles	405
21. Heat Transfer in Rocket Motors	415
22. Dissociation Effects	419
23. Cited References	425
G. Cooling by Protective Fluid Films	428
S. W. Yuan, Department of Aeronautical Engineering, The University of Texas, Austin, Texas	
1. Introduction	428
2. Flow through Porous Metal	430
3. Physical Nature of Transpiration-Cooling Process	434
4. Heat Transfer in Transpiration-Cooled Boundary Layer	437
5. Heat Transfer in Transpiration-Cooled Pipe Flow	460
6. Comparison with Experimental Results on Transpiration Cooling	475
7. Film Cooling and Its Comparison with Transpiration Cooling	481
8. Cited References and Bibliography	485
H. Physical Basis of Thermal Radiation	489
S. S. Penner, Division of Engineering, California Institute of Technology, Pasadena, California	
1. Introduction	489
2. Black Body Radiation Laws	489
3. Nonblack Radiators	491
4. Basic Laws for Distributed Radiators	492
5. Theoretical Calculation of Gas Emissivities	494
6. Cited References	500

 $\langle xiv \rangle$

I.	Engineering Calculations of Radiant Heat Exchange	502
	Hoyt C. Hottel, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massa- chusetts	
	1. Radiating Characteristics of Surfaces	502
	2. The View Factor. Direct Interchange between Surfaces	507
	3. Radiation from Flames and Gases	511
	4. Radiant Exchange in an Enclosure of Source-Sink and No-	
	Flux Surfaces Surrounding a Gray Gas	523
	5. Enclosure of Gray Source-Sink Surfaces Containing a Real	
	(Nongray) Gas	531
	6. Application of Principles	535
	7. Cited References	539