CONTENTS

.

PREFACE		page ix	
NOT	TE ON SYMBOLS	xi	
1 Introduction			
I.Î	The problem of hydrodynamic stability	I	
1.2	Mathematical formulation of the stability problem in an in-		
	compressible fluid	2	
1.3	Examples	4	
1.4	Some general remarks	XI	
	2 Stability of Couette Motion		
2, I	Recapitulation of the stability problem	15	
2.2	Approximate treatment of the problem	18	
2.3	Methods of analysis	22	
2.4	Analysis of G. I. Taylor	23	
	3 Stability of Plane Poiseuille Motion		
3.1	Two-dimensional and three-dimensional disturbances	27	
3.2	Analysis of two-dimensional disturbances	28	
3-3	Sufficient conditions for stability	31	
3.4	Method of asymptotic solutions: first method	32	
3-5	Reduction of the characteristic-value problem	36	
3.6	Method of asymptotic solutions: improved theory	39	
	Appendix	43	
	4 General Theory of Hydrodynamic Stability		
4. 1	Physical mechanism of instability	46	
4.2	Instability of revolving fluids	49	
4-3	Instability of parallel flows	52	
4.4	Vorticity theory of instability	56	
4-5	Energy balance in a disturbed flow	59	
4.6	Oscillations of finite amplitudes	64	

bage ix

.

.

•

CONTENTS

5 Boundary Layer over a Flat Plate

5.X	A brief survey of known results	page 67	
5.2	Small disturbances in the boundary layer in a gas	75	
5-3	Mathematical formulation of the stability problem	78	
5-4	Methods for calculation of stability characteristics: som simplified formulas	e 82	
5-5	General relations for the calculation of stability characteristics	≻ 85	
5.6	Stabilization of the boundary layer by cooling and othe methods	er 86	
	6 Other Nearly Parallel Flows		
6. 1	Instability of the boundary layer and its transition to tur bulence	- 89	
6.2	Various factors influencing the stability of the boundary laye	er 91	
6.3	The entry region in pipes and channels	98	
6,4	Mixing of two parallel streams	100	
	7 Examples of Stability Problems of Interest in Astrophysics and Geophysics		
7.I	General remarks	103	
7.2	Stability of zonal winds in the atmosphere	104	
7-3	Convective motion of a fluid heated from below	106	
7-4	Convective motion in the presence of a magnetic field	110	
8 Mathematical Theory for the Stability of Parallel Flows			
8.1	Asymptotic solutions for large Reynolds numbers	115	
8.2	Instability theory for perfect fluids	118	
8.3	A mathematical dilemma	123	
8.4	A physical paradox	125	
8.5	Heuristic approach to the analytical difficulties	126	
8.6	Asymptotic solutions of the first kind	129	
8.7	The improved asymptotic solutions	132	
8.8	Friction layers and friction regions	135	
8.9	Concluding remarks	138	
BIBLIOGRAPHY 141			
AUTHOR INDEX			

.

.

viii