Contents

1. Fundamental Aspects	
By P. A. Libby and F. A. Williams (With 2 Figures)	1
1.1 Background Literature	1
1.2 Turbulence in Reacting Liquids and Gases	2
1.3 The Eulerian Viewpoint and Notation	3
1.4 Transport Properties	4
1.5 Chemical Kinetics	5
1.6 Conservation Equations	8
1.7 Probabilistic Structure	12
1.8 Time Averaging and Favre Averaging	14
1.9 Probability-Density Functions	16
1.10 Intermittency	19
1.11 Fourier Decomposition	22
1.12 Favre-Averaged Conservation Equations	25
1.13 Closure and Additional Transport Equations	26
1.14 Mean Chemical Production	30
1.15 Coherent Structures	35
1.16 Scales and Similarity Numbers	37
1.17 Comparison Between Theory and Experiment	40
References	42
2. Practical Problems in Turbulent Reacting Flows	
By A. M. Mellor and C. R. Ferguson (With 14 Figures)	45
2.1 Introductory Remarks	45
2.2 Quasi-steady Flames	46
2.3 Gas Turbine and Furnace Combustors	48
2.4 Internal Combustion Engines	55
References	63
3. Turbulent Flows with Nonpremixed Reactants	
By R. W. Bilger (With 6 Figures)	65 ·
3.1 The Conserved Scalar Approach	
3.1.1 Conserved Scalars	

X Contents

3.1.3 Fast Chemistry Assumptions
3.1.4 Mean Properties
3.1.5 Pdfs of Conserved Scalars
3.1.6 The Reaction Rate
3.1.7 Application in Homogeneous Turbulence
3.1.8 Application in Shear Flows
3.1.9 Reaction Zone Structure
3.1.10 Pollutant Formation
3.2 Two-Variable Approaches
3.2.1 Second Variables
3.2.2 Chemical Production Term Closure for the Second Variable 90
3.2.3 Perturbation Variables
3.2.4 Perturbation Closure of \overline{w}_i
3.3 Direct Closure Approaches
3.3.1 Moment Closure Methods
3.3.2 Pdf Closure Methods
3.4 Other Approaches
3.5 Spectra and Nondimensional Numbers
3.5.1 Spectra
3.5.2 Nondimensional Numbers
3.6 Turbulence Structure and Modeling
3.6.1 Use of Favre Averaging
3.6.2 Turbulence Models
3.6.3 Flame-Generated Turbulence
2.7 Summony 110
3.7 Summary

4. Turbulent Flows with Premixed Reactants

By K. N. C. Bray (With 16 Figures)
4.1 Introductory Remarks
4.2 Review of Experiment
4.2.1 Flame Structure
4.2.2 Flame Speed
4.3 The Premixed Laminar Flame
4.4 Review of Theory
4.4.1 Regimes of Turbulent Flame Propagation
4.4.2 Existence of the Turbulent Flame Speed
4.4.3 Wrinkled Laminar Flame Theories
4.4.4 Combustion Controlled by Turbulent Mixing
4.5 A Unified pdf Model
4.5.1 Simple Model: The Progress Variable c
4.5.2 Thermochemical Closure for $P(c; x)$
4.5.3 Effects of Turbulence on Reaction Rate
4.5.4 Turbulent Transport Model

XI

4.5.5 Application to Planar Turbulent Flames						159
4.5.6 Laminar Flamelet pdf Model						166
4.5.7 A Joint pdf Model for Consecutive Reactions						168
4.6 Discussion and Concluding Remarks	•					176
References	•	•	•	•	•	180

5.	The Probability Density Function (pdf) Approach to ReactingTurbulentFlow	S
	By E. E. O'Brien	5
	5.1 Strategy and Early Developments	5
	5.2 Derivation of Single-Point pdf Equations)
	5.3 Closure Approximations)
	5.3.1 One-Point pdf Description)
	5.3.2 The Multipoint Descriptions	5
	5.4 Applications of the pdf Method)
	5.5 Summary	4
Re	ferences	5

6. Pers	pective and Research Topics. By P. A. Libby and F. A. Williams	219
6.1	Introductory Remarks	219
6.2	Radiative Transfer in Turbulent Flows	221
6.3	Two-Phase Turbulent Flows	223
6.4	Effects of High Mach Number	224
6.5	Effects of Buoyancy	225
6.6	Approaches Identifying Coherent Structures	226
6.7	Perturbation Methods Appropriate to Turbulent Reacting Flows	228
6.8	Numerical Methods Appropriate to Turbulent Reacting Flows.	230
6.9	Outstanding Problems Related to Chemistry	231
6.10	Outstanding Problems Related to Fluid Mechanics	232
6.11	Concluding Remarks	234
Referen	ices	234
Subject	Index	237