Contents

1	Intro	duction	to Nonlinear Wave Dynamics	1			
	1.1	Hamil	tonian Method for Description of Waves				
		in a C	ontinuous Medium	2			
		1.1.1	Hamiltonian Equations of Motion	3			
		1.1.2	Transfer to Complex Variables	4			
		1.1.3	Hamiltonian Structure Under Small Nonlinearity	5			
		1.1.4	Dynamic Perturbation Theory. Elimination				
			of "Non-Resonant" Terms from the Hamiltonian	10			
	1.2	Dimer	nsional Estimation of Hamiltonian Coefficients	11			
	1.3	Dynar	nic Equations of Motion				
		for We	eakly Non-Conservative Wave Systems	16			
		1.3.1	Taking into Account Linear Wave Damping	17			
		1.3.2	Allowing for Thermal Noise	18			
		1.3.3	Nonlinearity of Wave Damping	19			
	1.4	Three	-Wave Processes	20			
		1.4.1	Confluence of Two Waves				
			and Other Induced Processes	20			
		1.4.2	Decay Instability	22			
		1.4.3	Interaction of Three Waves with Finite Amplitude	24			
		1.4.4	Explosive Three-Wave Instability	26			
	1.5	Four-	Wave Processes	27			
		1.5.1	Modulation Instability of the Plane Wave	28			
		1.5.2	Equation for the Envelopes	30			
		1.5.3	Package Evolution in Unbounded Media	31			
2	The	Genera	al Properties of Magnetodielectrics	35			
	2.1		ification of Substances by Their Magnetic Properties	ies 35			
		2.1.1	Diamagnets	35			
		2.1.2	9	35			
			-	36			
		2.1.4	•	36			
	2.2	Natu	• • • • • • • • • • • • • • • • • • • •	38			
		2.2.1	9	38			
		2.2.2		40			
		2.2.3		41			
		2.2.4		42			
	2.2	2.1.2 2.1.3 2.1.4 Natur 2.2.1 2.2.2 2.2.3	Superconductors Paramagnets Magnetically Ordered Substances (Magnets) re of Interaction of Magnetic Moments Exchange Interaction in the Hydrogen Molecule Interatomic Exchange				

XII	Contents

		2.2.5	Relativistic Interactions	43
	2.3	Energy	of Ferromagnets in the Continuum Approximation	45
	2.4	Magnet	tic and Crystallographic Structure	
		of Som	e Magnets	49
		2.4.1	Crystals with Spinel Structure	50
		2.4.2	Crystals with Garnet Structure	51
		2.4.3	Crystals with Hexagonal Structure	52
		2.4.4	Crystals with Rhombohedral Structures	53
3	Spin	Waves ((Magnons) in Magnetically Ordered Dielectrics .	55
	3.1		onian of Magnons in Ferromagnets (FM)	56
		3.1.1	Spectrum of Magnons in Cubic Ferromagnets	57
		3.1.2	Amplitudes of Three-	
			and Four-Magnon Interaction	60
		3.1.3	Three-Magnon Hamiltonian	62
		3.1.4	Four-Magnon Interaction Hamiltonian	63
	3.2	Hamilt	onian Function of Magnons	
		in Ant	iferromagnets	65
		3.2.1	Magnon Spectrum in Antiferromagnets (AFM) .	65
		3.2.2	Interaction Hamiltonian	
			in "Easy-Plane" Antiferromagnets	68
		3.2.3	Nuclear Magnons	
			in "Easy-Plane" Antiferromagnets	69
	3.3	Comm	ents at the Road Fork	70
	3.4	Calcul	ation of Magnon Hamiltonian	70
		3.4.1	Equation of Motion of Magnetic Moment	70
		3.4.2	Canonical Variables for Spin Waves	
			in Ferromagnets (FM)	72
		3.4.3	Calculation of Frequencies	
			and Interaction Amplitudes of Waves	73
4	Non	linear D	ynamics of Narrow Packets of Spin Waves	77
	4.1	Eleme	ntary Processes of Spin Wave Interaction	77
		4.1.1	Three-Magnon Processes	77
		4.1.2	Modulation Instability of Spin Waves	80
	4.2	Self-Fe	ocusing of Magnetoelastic Waves	
		in Ant	tiferromagnets (AFM)	82
		4.2.1	Structure of Basic Equations	82
		4.2.2	Properties of Unidimensional Equations	84
		4.2.3	Stability of Solitons and Self-Focusing Theorem .	84
		4.2.4	Evolution of Magnetoelastic Waves in the Absence	
			of a Linear Bond Between Magnons and Phonons	86
	4.3		ods of Parametric Excitation of Spin Waves	87
		4.3.1	Transverse Pumping of Spin Waves in FM	87

			Contents	XIII
		4.3.2	Parallel Pumping of Spin Waves in FM	90
		4.3.3	"Oblique" Pumping of Spin Waves in FM	91
		4.3.4	Suhl Instability of the Second Order in FM	91
		4.3.5	Parallel Pumping	
			in "Easy-Plane" Antiferromagnets	92
		4.3.6	Parametric Pumping of Nuclear Magnons	94
5	Stati	onary N	Nonlinear Behavior of Parametrically Excited Waves.	
	Basic	c S-The	ory	93
	5.1	Histor	y of the Problem	95
	5.2	Staten	nent of a Problem	
		of Non	nlinear Wave Behavior	98
	5.3	Phase	Relations and Mechanisms	
		for An	nplitude Limitation	100
		5.3.1	Analysis of Phase Relations	100
		5.3.2	Nonlinear Mechanisms	
			for Limiting Parametric Instability	101
	5.4	Basic	Equations of Motion in the S -Theory	102
		5.4.1	Statistical Properties of a Non-Interacting Field .	102
		5.4.2	Mean-Field Approximation	103
		5.4.3	General Analysis of Basic Equations of S -Theory	106
	5.5	Groun	nd State of System of Interacting Parametric Waves	108
		5.5.1	Stationary States and Analysis of Instability	108
		5.5.2	Ground State Under Low Supercriticality	111
		5.5.3	Threshold of Generation of Second Group of Pairs	114
		5.5.4	Ground State Under High Supercriticality	116
		5.5.5	Nonlinear Susceptibilities of Parametric Waves	118
6	Adv	anced S	-Theory: Supplementary Sections	121
	6.1		nd State Evolution of System	
		with 1	Increasing Pumping Amplitude	123
		6.1.1	Ground State of Parametric Waves	
			for Complex Pair Interaction Amplitudes	124
		6.1.2	The Second and Intermediate Thresholds	125
		6.1.3	Nonlinear Behavior	
			of Non-Analytic Pair Interaction Amplitudes	128
	6.2		ence of Nonlinear Damping	
			arametric Excitation	132
		6.2.1	Simple Theory	132
		6.2.2	Influence of Non-Analyticity	
			on Nonlinear Damping	135
	6.3	Parar	metric Excitation	
		Unde	r the Feedback Effect on Pumping	139
		6.3.1	Hamiltonian of the Problem	139

		6.3.2	General Analysis of the Equations of Motion	141
		6.3.3	First-Order Processes	143
		6.3.4	Second-Order Processes	146
	6.4	Nonline	ear Theory of Parametric Wave Excitation	
		at Fini	te Temperatures	147
		6.4.1	Different Time Correlators	
			and Frequency Spectrum	147
		6.4.2	Basic Equations of Temperature S -Theory	148
		6.4.3	Separation of Waves into Parametric and Thermal	150
		6.4.4	Two-Dimensional Reduction of Basic Equations .	151
		6.4.5	Distribution of Parametric Waves in k	152
		6.4.6	Spectrum of Parametric Waves	153
		6.4.7	Heating Below Threshold	153
		6.4.8	Influence of Thermal Bath on Total Characteristics	153
	6.5	Introdu	uction to Spatially Inhomogeneous S -Theory	155
		6.5.1	Basic Equations	155
		6.5.2	Parametric Threshold in Inhomogeneous Media .	157
		6.5.3	Stationary State in Non-Homogeneous Media	160
	6.6		ear Behavior of Parametric Waves from	
			s Branches. Asymmetrical S-Theory	165
		6.6.1	Derivation of Basic Equations	165
		6.6.2	Stationary States in Isotropic Case	167
	6.7		etric Excitation of Waves by Noise Pumping	172
		6.7.1	Equations of S -Theory Under Noise Pumping \dots	173
		6.7.2	Distribution of Parametric Waves	
			Above Threshold	175
7	Non	-Station	ary Behavior of Parametrically Excited Waves	179
	7.1	Spectr	rum of Collective Oscillations (CO)	179
		7.1.1	Spectrum of Spatially Homogeneous CO	
			in the Non-Dissipation Limit	179
		7.1.2	Influence of Wave Damping on the CO Spectrum	181
		7.1.3	Spectrum of Spatially Non-Homogeneous CO	182
	7.2	Linear	Theory of CO Resonance Excitation	184
		7.2.1	Basic Equations and Their Solution	184
		7.2.2	CO Excitation by a Microwave Field	185
		7.2.3	Direct CO Excitation by a Radio Frequency Field	187
		7.2.4	Coupled Motions of Collective Excitations	
			of Parametric Waves and Sound	188
	7.3		hold Under Periodic Modulation of Dispersion Law	189
	7.4		-Amplitude Collective Oscillations	
			Oouble Parametric Resonance	193
		7.4.1	Stationary State Under Periodic Modulation	193

			Contents	XV
		7.4.2	Parametric Excitation of CO	
		1.1.2	of Parametric Wave System	194
	7.5	Transie	ent Processes when Pumping is Turned on	194
	1.0	7.5.1	Small Supercriticality Range	194
		7.5.2	High Supercriticality Range	198
	7.6		etric Excitation Under Sweeping of Wave Frequency	200
	1.0	7.6.1	Qualitative Analysis of the Problem	200
		7.6.2	Basic Equations of S-Theory	
			Under Frequency Sweeping	204
		7.6.3	Solution of S-Theory Equations	205
		7.6.4	Dependence of the Number of Waves	
			on the Pumping Amplitude	206
	7.7	Proble	ems	209
8	Seco	ndary P	Parametric Wave Turbulence	213
_	8.1		ility of Ground State and Auto-Oscillations	214
		8.1.1	Properties and Nature of Spin Wave Oscillations	214
		8.1.2	Numerical Simulation of Auto-Oscillation	
			in the S-Theory	215
		8.1.3	Conditions for Excitation of Auto-Oscillations	217
	8.2		to Chaos in Dynamic Systems	216
		8.2.1	Introduction	219
		8.2.2	Elementary Concepts of Theory of Dynamic Chaos	221
		8.2.3	Chaos of Parametric Magnons in CsMnF ₃	225
	8.3	Geom	etry of Attractors of Secondary	
			netric Turbulence of Magnons	229
		8.3.1	Effective Phase Space	
			and Dimensionality of Inclusion	229
		8.3.2	Experimental Study of Attractor Structure	
			in CsMnF ₃	230
	8.4	Secon	dary Turbulence and Collapses	
		in Na	rrow Parametric Wave Packets	233
		8.4.1	Equations for Envelopes	233
		8.4.2	Stationary Solitons	235
		8.4.3	Average Characteristics of Secondary Turbulence	236
		8.4.4	Destruction of Parametric Solitons	
			with Large Amplitude	237
		8.4.5	Soliton Mechanism of Amplitude Limitation	239
9	Ext	oerimen	tal Investigations of Parametrically Excited Magnons	243
	9.1		rimental Investigations	
		_	rametric Instability of Magnons	243
		9.1.1	Methods and Materials Investigated	243
		9.1.2	Measurements of Constants in Spin Wave Spectra	244

	9.1.3	Spin Wave Damping	245
9.2		ear Behavior of Parametric Magnons –	
		al Information	250
	9.2.1	Measuring Technique for Susceptibilities χ' and χ''	250
	9.2.2	Comparison of S -Theory and Experiment	
		for Susceptibilities	252
	9.2.3	Measurements of Interaction (Frequency Shift)	~~~
		Amplitude	255
	9.2.4	Nonlinear Ferromagnetic Resonance	257
9.3		igations of Stationary State With One Group of Pairs	258
	9.3.1	Nonlinear Susceptibility in the One-Group State	259
	9.3.2	Direct Measurement of Pair Phase	260
9.4		omagnetic Radiation of Parametric Magnons	262
	9.4.1	Frequency of Parametric Magnons	262
	9.4.2	Frequency Width	
		of Parametrically Excited Magnons	263
9.5		tive Resonance of Parametric Magnons	266
	9.5.1	Experimental Technique	267
	9.5.2	Frequency of Collective Resonance	269
	9.5.3	Susceptibility to Field of Weak Microwave Signal	272
	9.5.4	Linewidth of Collective Resonance	273
	9.5.5	Oscillations of Longitudinal Magnetization	274
	9.5.6	Other Methods for Excitation	
		of Collective Oscillations	275
9.6		rise Excitation in YIG	276
	9.6.1	Re-Radiation into the Transverse Channel	277
	9.6.2	Interaction of Second-Group Magnons	
		and Transverse Signal	278
9.7		itions of Excitation of Auto-Oscillations of Magnons	281
	9.7.1	Experimental Setup	283
	9.7.2	Intensive Auto-Oscillations of Mode $m = 0$	284
	9.7.3	Crossing the Instability Boundary	
		and Spatially Inhomogeneous Auto-Oscillations .	286
	9.7.4	Instability of Higher Collective Modes	288
9.8		of Radio-Frequency Field Modulation	
		arametric Resonance	289
	9.8.1	Suppression of Parametric Instability	
		by Modulation	289
	9.8.2	Stationary State of Parametric Magnons	
		Under Modulation of Their Frequency	291

	Contents	XVII
9.9	Double Parametric Resonance	
	and Inhomogeneous Collective Oscillations of Magnons .	293
9.10	Parametric Excitation of Magnons Under	
	Noise Modulation of their Frequencies	294
	9.10.1 Threshold Amplitude of Noise Pumping	294
	9.10.2 Efficiency of Phase Mechanism	
	Under Noise Pumping	296
0 Non	linear Kinetics of Parametrically Excited Waves	301
10.1	General Equations	301
10.2	Limit of the S-Theory	305
	10.2.1 Form of the Green's Function	305
	10.2.2 Separation of the Waves	
	into Parametric and Thermal	306
10.3	Nonlinear Theory of Parametric Excitation of Waves	
	in Random Media	307
	10.3.1 General Equations in the S, g^2 -Approximation	308
	10.3.2 Distribution Function of Parametric Waves	309
	10.3.3 Behavior of Parametrically Excited Waves	
	Beyond the Threshold	310
10.4	Consistent Nonlinear Theory	
	for Parametric Excitation of Waves	311
	10.4.1 Spectral Density of Parametrically Excited Waves	31
	10.4.2 Structure of the Distribution Function in k -Space	313
Refe	erences	31'
Sub	ject Index	32'