CONTENTS

PREFACE	v
SOUND NUMBERS FOR COMPUTING SOUND L.B. Felsen	1
GOALS FOR COMPUTATIONAL AEROACOUSTICS D.G. Crighton	3
THE MOVING BOUNDARY PROBLEM FOR THE WAVE EQUATION: THEORY AND APPLICATION F. Farassat and M.K. Myers	21
PROPAGATION OF ACOUSTIC WAVES THROUGH A TURBULENT BOUNDARY LAYER C.K.W. Tam	45
A MODEL PROBLEM FOR ACOUSTIC WAVE PROPAGATION IN THE ATMOSPHERE	65
S.I. Hariharan	65
COMPUTATIONS OF AEROACOUSTIC FIELDS USING FINITE VOLUME METHOD M.M.S. Khan	83
RAYLEIGH-RITZ COMPUTATIONAL TECHNIQUE FOR A VARIATIONAL FORMULATION OF SURFACE PRESSURE - EXEMPLIFIED BY SOUND RADIATION FROM A FLAT CIRCULAR DISK IN RIGID TRANSVERSE VIBRATION	
Xian-Feng Wu, A.D. Pierce, and J.H. Ginsberg	103
A NEW ALGORITHM FOR SOLVING THE WIDE ANGLE WAVE EQUATION Y. Saad and D. Lee	119
GENERATING PARALLEL ALGORITHMS THROUGH MULTIGRID AND AGGREGATION/DISAGGREGATION TECHNIQUES C.C. Douglas, S.C. Ma, and W.L. Miranker	133
THE COMPUTATION OF COMPLEX NORMAL MODE EIGENVALUES IN UNDERWATER ACOUSTIC PROPAGATION C.L. Bartberger	140
RANGE-DEPENDENT NORMAL-MODE CALCULATIONS OF ACOUSTIC PROPAGATION IN THE OCEAN INCLUDING EFFECTS OF LAYERED-	149
BOTTOM PENETRATION J.F. Miller	161
ACOUSTIC SCATTERING BY WIND-GENERATED WAVE-SURFACE SOLITONS: A CRITICAL SUMMARY D. Middleton	173
EXACT BUT COMPUTATIONALLY INTENSIVE PREDICTIONS FOR	
CW POINT SOURCE IN AN IDEAL WEDGE A. Tolstoy, R. Doolittle, and B. Decina	199

vii

Contents

EXACT NUMERICAL METHODS VS THE KIRCHHOFF APPROXIMATION FOR ROUGH SURFACE SCATTERING	
E.I. Thorsos	209
BATHYMETRIC SCATTERING BY PARABOLIC EQUATION SIMULATION R.N. Baer, J.S. Perkins, and D.H. Berman	227
A STUDY OF HIGH ORDER BORN APPROXIMATIONS FOR LOW GRAZING ANGLE HIGH FREQUENCY ROUGH INTERFACE SCATTERING M.F. Werby, and S.A. Chin-Bing	241
EIGENVALUE AND MATRIX TRANSFORM METHODS IN THE SOLUTION OF ACOUSTICAL SCATTERING PROBLEMS FROM SUBMERGED OBJECTS M.F. Werby, G.J. Tango, and L.H. Green	257
COMPUTATIONAL ACOUSTICS IN SHALLOW WATER WAVEGUIDE E.C. Shang, H.Y. Chen, and Y.Y. Wang	279
PERFORMANCE BOUNDS ON ARRAY PROCESSING FOR SOURCE LOCALIZATION USING FULL WAVE MODELING OF SIGNAL AND NOISE FIELDS	
A.B. Baggeroer, W.A. Kuperman, and H. Schmidt	299
ATTENUATION IN DUCTS LINED WITH POROUS BULK REACTING MATERIAL: A FINITE ELEMENT EIGENVALUE PROBLEM R.J. Astley and A. Cummings	321
COMPUTATIONAL STUDIES OF THE EFFECT OF AN EL NINO/SOUTHERN OSCILLATION EVENT ON UNDERWATER SOUND PROPAGATION D.R. Palmer, L.M. Lawson, Y.H. Daneshzadeh, and	225
D.W. Behringer	335
THE SOLUTION OF THE SHOCK WAVE PROBLEM USING THE FRACTIONAL STEP METHOD	
J.J. Westerink	357
A MULTIDOMAIN SPECTRAL COLLOCATION COMPUTATION OF THE SOUND GENERATED BY A SHOCK-VORTEX INTERACTION	
D.A. Kopriva	377
DIRECT GENERATION OF NORMAL MODES BY TRANSMUTATION THEORY M.D. Duston, G.R. Verma, D.H. Wood, and R.P. Gilbert	389
THEORETICAL AND COMPUTATIONAL ASPECTS OF FINITE AMPLITUDE	
SOUND BEAMS J.H. Ginsberg	403
CYLINDRICAL ARRAYS OF THINNED ARRANGEMENT Shan Bing-Yi	419

viii