CONTENTS

		Page
	Preface to the English edition	xi
	Notation	xii
	I. IDEAL FLUIDS	
§1.	The equation of continuity	1
§2.	Euler's equation	2
§3.	Hydrostatics	6
§4.	The condition that convection is absent	8
§5.	Bernoulli's equation	9
§6.	The energy flux	10
§7.	The momentum flux	12
§8	The conservation of circulation	14
§9.	Potential flow	16
§10.	Incompressible fluids	20
§11.	The drag force in potential flow past a body	31
§12.	Gravity waves	36
§13.	Long gravity wayes	4 2
§14.	Waves in an incompressible fluid	. 44
	II. VISCOUS FLUIDS	
§15.	The equations of motion of a viscous fluid	47
§16,	Energy dissipation in an incompressible fluid	53
§17.	Flow in a pipe	55
§18.	Flow between rotating cylinders	60

	3	Tion of a pipe	55
	§18.	Flow between rotating cylinders	60
	§19.	The law of similarity	61
	§20.	Stokes' formula	63
	§21.	The laminar wake	71
	§22.	The viscosity of suspensions	76
	§23.	Exact solutions of the equations of motion for a viscous fluid	79
	§24.	Oscillatory motion in a viscous fluid	88
•	§25.	Damping of gravity waves	98

;

III. TURBULENCE

§26.	Stability of steady flow	102
§27.	The onset of turbulence	103
§28.	Stability of flow between rotating cylinders	107
§29.	Stability of flow in a pipe	111

v

Contents

		Page
§30.	Instability of tangential discontinuities	114
§31.	Fully developed turbulence	116
§32.	Local turbulence	120
§33.	The velocity correlation	123
§34.	The turbulent region and the phenomenon of separation	128
§35.	The turbulent jet	130
§36.	The turbulent wake	136
§37.	Zhukovskii's theorem	137
§38.	Isotropic turbulence	140

IV. BOUNDARY LAYERS

§39.	The laminar boundary layer	145
§40.	Flow near the line of separation	151
§41.	Stability of flow in the laminar boundary layer	156
§42.	The logarithmic velocity profile	159
§43.	Turbulent flow in pipes	163
§44.	The turbulent boundary layer	166
§45.	The drag crisis	168
\$46.	Flow past streamlined bodies	172
§47.	Induced drag	175
<u>§</u> 48.	The lift of a thin wing	179

V. THERMAL CONDUCTION IN FLUIDS

;4 9.	The general equation of heat transfer	183
50.	Thermal conduction in an incompressible fluid	188
51.	Thermal conduction in an infinite medium	192
52.	Thermal conduction in a finite medium	196
53.	The similarity law for heat transfer	202
<u></u> 54.	Heat transfer in a boundary layer	205
55.	Heating of a body in a moving fluid	209
556.	Free convection	212

VI. DIFFUSION

§57.	The equations of fluid dynamics for a mixture of fluids	219
§58.	Coefficients of mass transfer and thermal diffusion	222
§59.	Diffusion of particles suspended in a fluid	227

VII. SURFACE PHENOMENA

§60.	Laplace's formula	230
§61.	Capillary waves	237
<u>§62.</u>	The effect of adsorbed films on the motion of a liquid	241

vi

	VIII. SOUND	Page
§63.	Sound waves	245
§64.	The energy and momentum of sound waves	249
§65.	Reflection and refraction of sound waves	253
§66.	Geometrical acoustics	256
§67.	Propagation of sound in a moving medium	259
§68.	Characteristic vibrations	262
§69.	Spherical waves	265
§70.	Cylindrical waves	268
§71.	The general solution of the wave equation	270
§72.	The lateral wave	273
§73.	The emission of sound	279
§74.	The reciprocity principle	288
§75.	Propagation of sound in a tube	291
§76.	Scattering of sound	294
§77.	Absorption of sound	298
§78.	Second viscosity	304

IX. SHOCK WAVES

§79.	Propagation of disturbances in a moving gas	310
§80.	Steady flow of a gas	313
§81.	Surfaces of discontinuity	317
§82.	The shock adiabatic	319
§83.	Weak shock waves	322
§84.	The direction of variation of quantities in a shock wave	325
§85.	Shock waves in a perfect gas	329
§86.	Oblique shock waves	333
§87.	The thickness of shock waves	-337
§88.	The isothermal discontinuity	342
§89.	Weak discontinuities	344

X. ONE-DIMENSIONAL GAS FLOW

§90.	Flow of gas through a nozzle	347
§91.	Flow of a viscous gas in a pipe	350
§92.	One-dimensional similarity flow	353
§93.	Discontinuities in the initial conditions	360
§94.	One-dimensional travelling waves	366
§95.	Formation of discontinuities in a sound wave	372
§96.	Characteristics	378
§97.	Riemann invariants	381
§98.	Arbitrary one-dimensional gas flow	386
§99.	The propagation of strong shock waves	392
§100.	Shallow-water theory	396

vii.

Contents

XI. THE INTERSECTION OF SURFACES OF DISCONTINUITY

		Page
§101.	Rarefaction waves	399
§102.	The intersection of shock waves	405
§103.	The intersection of shock waves with a solid surface	410
§104.	Supersonic flow round an angle	413
§105.	Flow past a conical obstacle	418

XII. TWO-DIMENSIONAL GAS FLOW

§106.	Potential flow of a gas	422
§107.	Steady simple waves	425
§108.	Chaplygin's equation: the general problem of steady two-	
	dimensional gas flow	430
§109.	Characteristics in steady two-dimensional flow	433
§110.	The Euler-Tricomi equation. Transonic flow	436
§111.	Solutions of the Euler-Tricomi equation near non-singular	
-	points of the sonic surface	441
§112.	Flow at the velocity of sound	446
§113.	The intersection of discontinuities with the transition line	451

XIII. FLOW PAST FINITE BODIES

§114.	The formation of shock waves in supersonic flow past bodies	457
§115.	Supersonic flow past a pointed body	460
§116.	Subsonic flow past a thin wing	464
§117.	Supersonic flow past a wing	466
§118.	The law of transonic similarity	469
§119.	The law of hypersonic similarity	472

XIV. FLUID DYNAMICS OF COMBUSTION

§120.	Slow combustion	474
§121.	Detonation	480
§122.	The propagation of a detonation wave	487
§123.	The relation between the different modes of combustion	493
§124.	Condensation discontinuities	496

XV. RELATIVISTIC FLUID DYNAMICS

§125.	The energy-momentum tensor	ក ដំបូក	499
§126.	The equations of relativistic fluid dynamics		500
§127.	Relativistic equations for dissipative processes		505

viii

Contents
CONCONTRO

	XVI. DYNAMICS OF SUPERFLUIDS	Page
§128.	Principal properties of superfluids	507
§129.	The thermo-mechanical effect	509
§130.	The equations of superfluid dynamics	510
§131.	The propagation of sound in a superfluid	517

XVII. FLUCTUATIONS IN FLUID DYNAMICS

§132.	The general theory of fluctuations in fluid dynamics	523
§133.	Fluctuations in an infinite medium	526
Index		530

:

•

ix